scholarly journals Evaluation of Wigner-Ville Distribution Features to Estimate Steady-State Visual Evoked Potentials' Stimulation Frequency

Author(s):  
Murside Degirmenci ◽  
Ebru Sayilgan ◽  
Yalcin Isler

Brain Computer Interface (BCI) is a system that enables people to communicate with the outside world and control various electronic devices by interpreting only brain activity (motor movement imagination, emotional state, any focused visual or auditory stimulus, etc.). The visual stimulation based recording is one of the most popular methods among various electroencephalography (EEG) recording methods. Steady-state visual-evoked potentials (SSVEPs) where visual objects are blinking at a fixed frequency play an important role due to their high signal-to-noise ratio and higher information transfer rate in BCI applications. However, the design of multiple (more than 3) commands systems in SSVEPs based BCI systems is limited. The different approaches are recommended to overcome these problems. In this study, an approach based on machine learning is proposed to determine stimulating frequency in SSVEP signals. The data set (AVI SSVEP Dataset) is obtained through open access from the internet for simulations. The dataset includes EEG signals that was recorded when subjects looked at a flickering frequency at seven different frequencies (6-6.5-7-7.5-8.2-9.3-10Hz). In the machine learning-based approach Wigner-Ville Distribution (WVD) is used and features are extracted using Time-Frequency (TF) representations of EEG signals. These features are classified by Decision Tree, Linear Discriminant Analysis (LDA), k-Nearest Neighbor (k-NN), Support Vector Machine (SVM), Naive Bayes, Ensemble Learning classifiers. Simulation results demonstrate that the proposed approach achieved promising accuracy rates for 7 command SSVEP systems. As a consequence, the maximum accuracy is achieved in the Ensemble Learning classifier with 47.60%.

Author(s):  
Ebru Sayilgan ◽  
Yilmaz Kemal Yuce ◽  
Yalcin Isler

Brain-computer interface (BCI) system based on steady-state visual evoked potentials (SSVEP) have been acceleratingly used in different application areas from entertainment to rehabilitation, like clinical neuroscience, cognitive, and use of engineering researches. Of various electroencephalography paradigms, SSVEP-based BCI systems enable apoplectic people to communicate with outside world easily, due to their simple system structure, short or no training time, high temporal resolution, high information transfer rate, and affordable by comparing to other methods. SSVEP-based BCIs use multiple visual stimuli flickering at different frequencies to generate distinct commands. In this paper, we compared the classifier performances of combinations of binary commands flickering at seven different frequencies to determine which frequency pair gives the highest performance using temporal and spectral methods. For SSVEP frequency recognition, in total 25 temporal change characteristics of the signals and 15 frequency-based feature vectors extracted from the SSVEP signal. These feature vectors were applied to the input of seven well-known machine learning algorithms (Decision Tree, Discriminant Analysis, Logistic Regression, Naive Bayes, Support Vector Machines, Nearest Neighbour, and Ensemble Learning). In conclusion, we achieved 100% accuracy in 7.5 - 10 frequency pairs among these 2,520 distinct runs and we found that the most successful classifier is the Ensemble Learning classifier. The combination of these methods leads to an appropriate detailed and comparative analysis that represents the robustness and effectiveness of classical approaches.


1996 ◽  
Vol 99 (4) ◽  
pp. 327
Author(s):  
V. Radivojević ◽  
M. Car ◽  
M. Rajković ◽  
. Martinović ◽  
N. Krstić

2013 ◽  
Vol 44 (1) ◽  
pp. 146-149 ◽  
Author(s):  
Yu-Yi Chien ◽  
Fang-Cheng Lin ◽  
Ching-Chi Chou ◽  
John K. Zao ◽  
Heng-Yuan Kuo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document