The $D$ numbers and the central factorial numbers

2011 ◽  
Vol 79 (1-2) ◽  
pp. 41-53 ◽  
Author(s):  
GUODONG LIU
Filomat ◽  
2017 ◽  
Vol 31 (15) ◽  
pp. 4833-4844 ◽  
Author(s):  
Eda Yuluklu ◽  
Yilmaz Simsek ◽  
Takao Komatsu

The aim of this paper is to give some new identities and relations related to the some families of special numbers such as the Bernoulli numbers, the Euler numbers, the Stirling numbers of the first and second kinds, the central factorial numbers and also the numbers y1(n,k,?) and y2(n,k,?) which are given Simsek [31]. Our method is related to the functional equations of the generating functions and the fermionic and bosonic p-adic Volkenborn integral on Zp. Finally, we give remarks and comments on our results.


2021 ◽  
pp. 114862
Author(s):  
Dragan Pamučar ◽  
Adis Puška ◽  
Željko Stević ◽  
Goran Ćirović
Keyword(s):  

2017 ◽  
Vol 24 (2) ◽  
pp. 653-669 ◽  
Author(s):  
Ningkui WANG ◽  
Daijun WEI

Environmental impact assessment (EIA) is usually evaluated by many factors influenced by various kinds of uncertainty or fuzziness. As a result, the key issues of EIA problem are to rep­resent and deal with the uncertain or fuzzy information. D numbers theory, as the extension of Dempster-Shafer theory of evidence, is a desirable tool that can express uncertainty and fuzziness, both complete and incomplete, quantitative or qualitative. However, some shortcomings do exist in D numbers combination process, the commutative property is not well considered when multiple D numbers are combined. Though some attempts have made to solve this problem, the previous method is not appropriate and convenience as more information about the given evaluations rep­resented by D numbers are needed. In this paper, a data-driven D numbers combination rule is proposed, commutative property is well considered in the proposed method. In the combination process, there does not require any new information except the original D numbers. An illustrative example is provided to demonstrate the effectiveness of the method.


Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 312
Author(s):  
Haiyang Hou ◽  
Chunyu Zhao

D numbers theory is an extension of Dempster–Shafer evidence theory. It eliminates the constraints of mutual exclusion and completeness under the frame of discernment of Dempster–Shafer evidence theory, so it has been widely used to deal with uncertainty modelling, but if it cannot effectively deal with the problem of missing information, sometimes unreasonable conclusions will be drawn. This paper proposes a new type of integration representation of D numbers, which compares the data of multiple evaluation items horizontally, and can reasonably fill in missing information. We apply this method to the user experience evaluation problem of online live course platform to verify the effectiveness of this method.


Author(s):  
Liguo Fei ◽  
Yuqiang Feng

Belief function has always played an indispensable role in modeling cognitive uncertainty. As an inherited version, the theory of D numbers has been proposed and developed in a more efficient and robust way. Within the framework of D number theory, two more generalized properties are extended: (1) the elements in the frame of discernment (FOD) of D numbers do not required to be mutually exclusive strictly; (2) the completeness constraint is released. The investigation shows that the distance function is very significant in measuring the difference between two D numbers, especially in information fusion and decision. Modeling methods of uncertainty that incorporate D numbers have become increasingly popular, however, very few approaches have tackled the challenges of distance metrics. In this study, the distance measure of two D numbers is presented in cases, including complete information, incomplete information, and non-exclusive elements


Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 288 ◽  
Author(s):  
Taekyun Kim ◽  
Dae Kim ◽  
Gwan-Woo Jang

In this paper, we introduce central complete and incomplete Bell polynomials which can be viewed as generalizations of central Bell polynomials and central factorial numbers of the second kind, and also as ’central’ analogues for complete and incomplete Bell polynomials. Further, some properties and identities for these polynomials are investigated. In particular, we provide explicit formulas for the central complete and incomplete Bell polynomials related to central factorial numbers of the second kind.


2019 ◽  
Vol 49 (9) ◽  
pp. 3248-3266 ◽  
Author(s):  
Jun Xia ◽  
Yuqiang Feng ◽  
Luning Liu ◽  
Dongjun Liu ◽  
Liguo Fei

1982 ◽  
Vol 64 ◽  
pp. 49-50
Author(s):  
William Buscombe
Keyword(s):  

The majority of entries for MK Spectral Classifications in the Kennedy & Buscombe (1974) catalogue referred to stars brighter than 9th magnitude with H. D. numbers. Accordingly, the file was arranged in sequence corresponding to right ascension for 1900, although the co-ordinates were actually listed for the epoch 2000, in accordance with an earlier precept established in the IAU.


Sign in / Sign up

Export Citation Format

Share Document