scholarly journals Studying Particle Production in Small Systems Through Correlation Measurements in ALICE

2021 ◽  
Vol 14 (1) ◽  
pp. 21
Author(s):  
J. Adolfsson
2018 ◽  
Vol 171 ◽  
pp. 11001
Author(s):  
Néstor Armesto

Many observables measured at the Relativistic Heavy Ion Collider and the Large Hadron Collider show a smooth transition between proton-proton and protonnucleus collisions (small systems), and nucleus-nucleus collisions (large systems), when represented versus some variable like the multiplicity in the event. In this contribution I review some of the physics mechanisms, named cold nuclear matter effects, that may lead to a collective-like behaviour in small systems beyond the macroscopic description provided by relativistic hydrodynamics. I focus on the nuclear modification of parton densities, single inclusive particle production and correlations.


2018 ◽  
Vol 171 ◽  
pp. 14003 ◽  
Author(s):  
Christian Bierlich

Rope Hadronization is a model extending the Lund string hadronization model to describe environments with many overlapping strings, such as high multiplicity pp collisions or AA collisions. Including effects of Rope Hadronization drastically improves description of strange/non-strange hadron ratios as function of event multiplicity in all systems from e+e− to AA. Implementation of Rope Hadronization in the MC event generators Dipsy and Pythia8 is discussed, as well as future prospects for jet studies and studies of small systems.


2018 ◽  
Vol 171 ◽  
pp. 19007
Author(s):  
George S. F. Stephans

Recent unexpected evidence for collectivity in high multiplicity pp and pPb collisions at LHC energies has challenged the notion that such small systems do not exhibit any of the properties that have been used to study the quark gluon plasma in heavy ion collisions. An overview of recent results concerning particle production and collectivity in such collisions using the CMS detector at the LHC is presented.


2020 ◽  
Vol 235 ◽  
pp. 02001
Author(s):  
Veronica Canoa Roman

Direct photons are a unique probe to study the properties of the medium created in heavy ion collisions. In particular low pT direct photons are of great importance since one expects that they are predominantly of thermal origin. In A+A systems PHENIX has observed a large yield of low pT direct photon that are emitted with a significant azimuthal anisotropy with respect to the reaction plane (v2). The mechanism responsible for the large yield and large v2 is not understood yet. Following recent evidence for collective behavior of charged particle production from small systems like p+A, d+Au, and 3He+Au, PHENIX has made systematic measurements of direct pho- tons with different collision energies and system configurations. It has been found that the low pT direct photon yield dNγ/dη is proportional to (dNch/dη)α. This behavior holds for beam energies measured both at RHIC and at the LHC in large-on-large systems, while data from small systems suggest an onset of QGP formation at low dNch/dα. In this talk, I will report recent measurements of thermal photon and related observables.


Author(s):  
Philip D. Lunger ◽  
H. Fred Clark

In the course of fine structure studies of spontaneous “C-type” particle production in a viper (Vipera russelli) spleen cell line, designated VSW, virus particles were frequently observed within mitochondria. The latter were usually enlarged or swollen, compared to virus-free mitochondria, and displayed a considerable degree of cristae disorganization.Intramitochondrial viruses measure 90 to 100 mμ in diameter, and consist of a nucleoid or core region of varying density and measuring approximately 45 mμ in diameter. Nucleoid density variation is presumed to reflect varying degrees of condensation, and hence maturation stages. The core region is surrounded by a less-dense outer zone presumably representing viral capsid.Particles are usually situated in peripheral regions of the mitochondrion. In most instances they appear to be lodged between loosely apposed inner and outer mitochondrial membranes.


2009 ◽  
Vol 00 (00) ◽  
pp. 090930024652050-8
Author(s):  
M. Trotta ◽  
R. Cavalli ◽  
C. Trotta ◽  
R. Bussano ◽  
L. Costa

Sign in / Sign up

Export Citation Format

Share Document