scholarly journals Research of inflow control devices for estimation of application in intellectual well

Author(s):  
R. A. Ismakov ◽  
◽  
E. V. Denisova ◽  
S. P. Sidorov ◽  
M. A. Chernikova ◽  
...  

Ensuring the completeness of oil and gas production from the subsoil by using modern techniques and technologies for controlling the inflow into the well is an urgent task, especially for wells with long horizontal ends. Inflow control devices (ICD), used in conjunction with packers and downhole measurement devices, are part of such systems, covered by the concept of «smart well». In general, such systems make it possible to control the inflow (flow rate) in individual intervals of horizontal wells or in vertical wells of multilayer fields while operating simultaneously in order to optimize production without additional downhole operations in real time. Keywords: inflow control device; horizontal well; intelligent well.

2021 ◽  
Author(s):  
David Russell ◽  
Price Stark ◽  
Sean Owens ◽  
Awais Navaiz ◽  
Russell Lockman

Abstract Reducing well costs in unconventional development while maintaining or improving production continues to be important to the success of operators. Generally, the primary drivers for oil and gas production are treatment fluid volume, proppant mass, and the number of stages or intervals along the well. Increasing these variables typically results in increased costs, causing additional time and complexity to complete these larger designs. Simultaneously completing two wells using the same volumes, rates, and number of stages as for any previous single well, allows for more lateral length or volume completed per day. This paper presents the necessary developments and outcomes of a completion technique utilizing a single hydraulic fracturing spread to simultaneously stimulate two or more horizontal wells. The goal of this technique is to increase operational efficiency, lower completion cost, and reduce the time from permitting a well to production of that well—without negatively impacting the primary drivers of well performance. To date this technique has been successfully performed in both the Bakken and Permian basins in more than 200 wells, proving its success can translate to other unconventional fields and operations. Ultimately, over 200 wells were successfully completed simultaneously, resulting in a 45% increase in completion speed and significant decrease in completion costs, while still maintaining equivalent well performance. This type of simultaneous completion scenario continues to be implemented and improved upon to improve asset returns.


2018 ◽  
Vol 41 ◽  
pp. 01025 ◽  
Author(s):  
Fares Abu-Abed

Today complications during drilling and operation of oil and gas wells are unavoidable. Most of them are the result of violation of technological discipline (technology), some are due to insufficient knowledge of geological and physical conditions (especially in exploratory drilling), a lack of understanding of the causes of the phenomena preceding the complication. Sometimes performers in performing complex technological operations go to the so-called “justified” risk, as a result of which complications and accidents occur. It should be taken into account that the failure of the well even for a short time - the loss of oil and gas production. Therefore, the development of modern methods for their detection, prevention (prevention) and methods to combat their consequences is an urgent task.


2012 ◽  
Vol 155-156 ◽  
pp. 722-725
Author(s):  
Wen Bin Cai ◽  
Guo Wei Qin ◽  
Yan He

In the oil and gas production process, serious sand production causes reservoir and pipe blocked, which makes productivity declined, even stopped. It's the efficient means of sand washing and plug removal by using high-pressure foam fluid jet. The structure and performance of sand washing device determines the efficiency of sand washing and plug removal. The device's nozzle consists of anti-blocking valves, three kinds of nozzles with self-drive, rotation characteristics during the operation. The nozzles include sand washing nozzle, couple nozzle and power nozzle. This device can be used in horizontal wells with complex well bore situation to carry out sand and plug removal. The device has a good effect on sand washing and plug removal in the oil field.


2012 ◽  
Vol 241-244 ◽  
pp. 1396-1399
Author(s):  
Gui Min Nie ◽  
Dan Guo ◽  
Yan Wang ◽  
Xiao Wei Cheng

With the depletion of shallow-layer oil and gas pools inLiaohe oilfield, buried hill stratigraphic reservoirs in Liaohe oil field are becoming main objectives for exploration in recent years, especially in high-risk areas of Xinglongtai deep the Hing ancient buried hill resources are particularly rich. Since 2007, Liaohe oilfield increased investment for Buried Hill reservoirs with deep horizontal drilling developt the buried hill reservoir. Liaohe has completed 36 deep horizontal, with a total footage of 183920m, the average depth of 5109m. Improving drilling speed of "buried hill deep horizontal and branch horizontal wells”, and reducing drilling costs are of great urgency. “Hing buried hill deep horizontal, horizontal wells,” with composite drilling technology, supporting the optimization of PDC bits, the high-pressure jet drilling, the MWD borehole trajectory control and optimization of drilling parameters, the new drilling fluid technology and so on. With a large number of horizontal wells put into Buried Hill stratigraphic reservoirs, oil and gas production of average deep horizontal well increase of 2-5 times. Besides, the previous recovery and production of oil and gas reservoirs significantly improved to create an objective economic and social benefits.


2021 ◽  
Author(s):  
Andrey Serebryakov ◽  
Gennadiy Zhuravlev

The textbook describes the design features of offshore horizontal multi-hole production wells, as well as the bottom-hole components of horizontal multi-hole wells. The classification of complications of multi-hole horizontal wells, methods of their prevention and elimination are given. Methods of underground geonavigation of the development of offshore horizontal production wells are proposed. The geological and field bases of operation of horizontal offshore multi-hole oil and gas wells, modes and dynamics of oil, gas and associated water production, methods for calculating dynamic bottom-hole and reservoir pressures are specified. The technologies of operation of offshore horizontal multi-hole wells are presented. The composition and scope of environmental, field and research marine monitoring of the operation of offshore horizontal multi-hole wells and the protection of the marine environment in the production of oil and gas are justified. Meets the requirements of the federal state educational standards of higher education of the latest generation. It is intended for undergraduates of the enlarged group of "Earth Sciences" training areas, as well as for teachers, employees of the fuel and energy complex, industrial geological exploration and oil and gas production enterprises, scientific and design organizations.


Author(s):  
Oluwasanmi Olabode ◽  
Sunday Isehunwa ◽  
Oyinkepreye Orodu ◽  
Daniel Ake

AbstractThin oil rim reservoirs are predominantly those with pay thickness of less than 100 ft. Oil production challenges arise due to the nature of the gas cap and aquifer in such reservoirs and well placement with respect to the fluid contacts. Case studies of oil rim reservoir and operational properties from the Niger-Delta region are used to build classic synthetic oil rim models with different reservoir parameters using a design of experiment. The black oil simulation model of the ECLIPSE software is activated with additional reservoir properties and subsequently initialized to estimate initial oil and gas in place. To optimize hydrocarbon production, 2 horizontal wells are initiated, each to concurrently produce oil and gas. Well placements of (0.5 ft., 0.25 ft. and 0.75 ft.) are made with respect to the pay thickness and then to the fluid contacts. The results show that for oil rim with bigger aquifers, an oil recovery of 8.3% is expected when horizontal wells are placed at 0.75 ft. of the pay thickness away from the gas oil contact, 8.1% oil recovery in oil rims with larger gas caps with completions at 0.75 ft. of the pay zone from the gas oil contacts, 6% oil recovery with relatively small gas caps and aquifer and 9.3% from oil rims with large gas caps and aquifers, with completions at mid-stream of the pay zone.


Elem Sci Anth ◽  
2019 ◽  
Vol 7 ◽  
Author(s):  
Seth N. Lyman ◽  
Trang Tran ◽  
Marc L. Mansfield ◽  
Arvind P. Ravikumar

We deployed a helicopter with an infrared optical gas imaging camera to detect hydrocarbon emissions from 3,428 oil and gas facilities (including 3,225 producing oil and gas well pads) in Utah’s Uinta Basin during winter and spring 2018. We also surveyed 419 of the same well pads from the ground. Winter conditions led to poor contrast between emission plumes and the ground, leading to a detection limit for the aerial survey that was between two and six times worse than a previous summertime survey. Because the ground survey was able to use the camera’s high-sensitivity mode, the rate of detected emission plumes was much higher in the ground survey (31% of all surveyed well pads) relative to the aerial survey (0.5%), but colder air temperatures appeared to impair plume detection in the ground survey as well. The aerial survey cost less per facility visited, but the ground survey cost less per emission plume detected. Well pads with detected emissions during the ground and aerial surveys had higher oil and gas production, were younger, were more likely to be oil well pads, and had more liquid storage tanks per pad relative to the entire surveyed population. The majority of observed emission plumes were from liquid storage tanks (75.9% of all observed plumes), including emissions from pressure relief valves and thief hatches on the tank or from piping that connects to the tank. Well pads with control devices to reduce emissions from tanks (combustors or vapor recovery units) were more likely to have detected emissions. This finding does not imply that the control devices themselves were not functioning properly. Instead, gas was escaping into the atmosphere before it reached control devices. Pads with control devices tended to be newer and have higher oil and gas production, which probably explains their higher rate of detected emissions.


2004 ◽  
Vol 15 (4) ◽  
pp. 409-450 ◽  
Author(s):  
C. ATKINSON ◽  
F. MONMONT ◽  
A. F. ZAZOVSKY

This paper presents a powerful approximate method for modelling the steady single-phase flow into a horizontal well completed with an Inflow Control Device (ICD) in an anisotropic reservoir. Two types of problems are investigated: the forward problem, which allows the user to find the flux distribution along the wellbore for a specified pressure drawdown, and the inverse problem to determine the ICD properties when the flux or reservoir pressure drawdown along the wellbore is given. The method is based on structuring the flow patterns around and, inside the wellbore and across the ICD and on the reduction of the dimensionality of the problem by using boundary integral equations. The resulting one dimensional singular nonlinear integro-differential equation is solved numerically, using the appropriate quadrature formula for singular integrals with Cauchy kernels.


Sign in / Sign up

Export Citation Format

Share Document