Simultaneous Hydraulic Fracturing Improves Completion Efficiency and Lowers Costs Per Foot

2021 ◽  
Author(s):  
David Russell ◽  
Price Stark ◽  
Sean Owens ◽  
Awais Navaiz ◽  
Russell Lockman

Abstract Reducing well costs in unconventional development while maintaining or improving production continues to be important to the success of operators. Generally, the primary drivers for oil and gas production are treatment fluid volume, proppant mass, and the number of stages or intervals along the well. Increasing these variables typically results in increased costs, causing additional time and complexity to complete these larger designs. Simultaneously completing two wells using the same volumes, rates, and number of stages as for any previous single well, allows for more lateral length or volume completed per day. This paper presents the necessary developments and outcomes of a completion technique utilizing a single hydraulic fracturing spread to simultaneously stimulate two or more horizontal wells. The goal of this technique is to increase operational efficiency, lower completion cost, and reduce the time from permitting a well to production of that well—without negatively impacting the primary drivers of well performance. To date this technique has been successfully performed in both the Bakken and Permian basins in more than 200 wells, proving its success can translate to other unconventional fields and operations. Ultimately, over 200 wells were successfully completed simultaneously, resulting in a 45% increase in completion speed and significant decrease in completion costs, while still maintaining equivalent well performance. This type of simultaneous completion scenario continues to be implemented and improved upon to improve asset returns.

2014 ◽  
Vol 67 (4) ◽  
pp. 373-378 ◽  
Author(s):  
Carlos Mouallem ◽  
Wilson Trigueiro de Sousa ◽  
Ivo Eyer Cabral ◽  
Adilson Curi

Hydraulic fracturing emerges currently, all over the world, as one of the more strategic techniques used by companies in the oil exploitation sector. This technique is characterized by its high productivity and profit in relation to conventional methods of hydrocarbon exploitation. However, in many countries, as is the case of Brazil, there are several divergences considering the employment of this methodology. Many renowned researchers attest that there are several irreversible environmental impacts generated by the use of this methodology. Among the main environmental impacts are the risk of groundwater level contamination, the risk of surface subsidence, and the risk of the environment contamination with fluids used in the process of the oil and gas extraction.


Author(s):  
Mark McDougall ◽  
Ken Williamson

Oil and gas production in Canada’s west has led to the need for a significant increase in pipeline capacity to reach export markets. Current proposals from major oil and gas transportation companies include numerous large diameter pipelines across the Rocky Mountains to port locations on the coast of British Columbia (BC), Canada. The large scale of these projects and the rugged terrain they cross lead to numerous challenges not typically faced with conventional cross-country pipelines across the plains. The logistics and access challenges faced by these mountain pipeline projects require significant pre-planning and assessment, to determine the timing, cost, regulatory and environmental impacts. The logistics of pipeline construction projects mainly encompasses the transportation of pipe and pipeline materials, construction equipment and supplies, and personnel from point of manufacture or point of supply to the right-of-way (ROW) or construction area. These logistics movement revolve around the available types of access routes and seasonal constraints. Pipeline contractors and logistics companies have vast experience in moving this type of large equipment, however regulatory constraints and environmental restrictions in some locations will lead to significant pre-planning, permitting and additional time and cost for material movement. In addition, seasonal constraints limit available transportation windows. The types of access vary greatly in mountain pipeline projects. In BC, the majority of off-highway roads and bridges were originally constructed for the forestry industry, which transports logs downhill whereas the pipeline industry transports large equipment and pipeline materials in both directions and specifically hauls pipe uphill. The capacity, current state and location of these off-highway roads must be assessed very early in the process to determine viability and/or potential options for construction access. Regulatory requirements, environmental restrictions, season of use restrictions and road design must all be considered when examining the use of or upgrade of existing access roads and bridges. These same restrictions are even more critical to the construction of new access roads and bridges. The logistics and access challenges facing the construction of large diameter mountain pipelines in Western Canada can be managed with proper and timely planning. The cost of the logistics and access required for construction of these proposed pipeline projects will typically be greater than for traditional pipelines, but the key constraint is the considerable time requirement to construct the required new access and pre-position the appropriate material to meet the construction schedule. The entire project team, including design engineers, construction and logistics planners, and material suppliers must be involved in the planning stages to ensure a cohesive strategy and schedule. This paper will present the typical challenges faced in access and logistics for large diameter mountain pipelines, and a process for developing a comprehensive plan for their execution.


2020 ◽  
Vol 6 (8) ◽  
pp. eaav2110
Author(s):  
Daniel Raimi

Kondash et al. provide a valuable contribution to our understanding of water consumption and wastewater production from oil and gas production using hydraulic fracturing. Unfortunately, their claim that the water intensity of energy production using hydraulic fracturing has increased in all regions is incorrect. More comprehensive data show that, while the water intensity of production may have increased in regions such as the Permian basin, it has decreased by 74% in the Marcellus and by 19% in the Eagle Ford region. This error likely stems from an improper method for estimating energy production from wells: The authors use the median well to represent regional production, which systematically underestimates aggregate production volumes. Across all regions, aggregate data suggest that the water intensity of oil and natural gas production using hydraulic fracturing has increased by 19%. There also appears to be an error in estimates for water consumption in the Permian basin.


2012 ◽  
Vol 155-156 ◽  
pp. 722-725
Author(s):  
Wen Bin Cai ◽  
Guo Wei Qin ◽  
Yan He

In the oil and gas production process, serious sand production causes reservoir and pipe blocked, which makes productivity declined, even stopped. It's the efficient means of sand washing and plug removal by using high-pressure foam fluid jet. The structure and performance of sand washing device determines the efficiency of sand washing and plug removal. The device's nozzle consists of anti-blocking valves, three kinds of nozzles with self-drive, rotation characteristics during the operation. The nozzles include sand washing nozzle, couple nozzle and power nozzle. This device can be used in horizontal wells with complex well bore situation to carry out sand and plug removal. The device has a good effect on sand washing and plug removal in the oil field.


2012 ◽  
Vol 241-244 ◽  
pp. 1396-1399
Author(s):  
Gui Min Nie ◽  
Dan Guo ◽  
Yan Wang ◽  
Xiao Wei Cheng

With the depletion of shallow-layer oil and gas pools inLiaohe oilfield, buried hill stratigraphic reservoirs in Liaohe oil field are becoming main objectives for exploration in recent years, especially in high-risk areas of Xinglongtai deep the Hing ancient buried hill resources are particularly rich. Since 2007, Liaohe oilfield increased investment for Buried Hill reservoirs with deep horizontal drilling developt the buried hill reservoir. Liaohe has completed 36 deep horizontal, with a total footage of 183920m, the average depth of 5109m. Improving drilling speed of "buried hill deep horizontal and branch horizontal wells”, and reducing drilling costs are of great urgency. “Hing buried hill deep horizontal, horizontal wells,” with composite drilling technology, supporting the optimization of PDC bits, the high-pressure jet drilling, the MWD borehole trajectory control and optimization of drilling parameters, the new drilling fluid technology and so on. With a large number of horizontal wells put into Buried Hill stratigraphic reservoirs, oil and gas production of average deep horizontal well increase of 2-5 times. Besides, the previous recovery and production of oil and gas reservoirs significantly improved to create an objective economic and social benefits.


2021 ◽  
Author(s):  
Andrey Serebryakov ◽  
Gennadiy Zhuravlev

The textbook describes the design features of offshore horizontal multi-hole production wells, as well as the bottom-hole components of horizontal multi-hole wells. The classification of complications of multi-hole horizontal wells, methods of their prevention and elimination are given. Methods of underground geonavigation of the development of offshore horizontal production wells are proposed. The geological and field bases of operation of horizontal offshore multi-hole oil and gas wells, modes and dynamics of oil, gas and associated water production, methods for calculating dynamic bottom-hole and reservoir pressures are specified. The technologies of operation of offshore horizontal multi-hole wells are presented. The composition and scope of environmental, field and research marine monitoring of the operation of offshore horizontal multi-hole wells and the protection of the marine environment in the production of oil and gas are justified. Meets the requirements of the federal state educational standards of higher education of the latest generation. It is intended for undergraduates of the enlarged group of "Earth Sciences" training areas, as well as for teachers, employees of the fuel and energy complex, industrial geological exploration and oil and gas production enterprises, scientific and design organizations.


Author(s):  
Zhaopeng Zhu ◽  
Xianzhi Song ◽  
Xuezhe Yao ◽  
Shuo Zhu ◽  
Silin Jing

Abstract Hydraulic fracturing is an important technology to improve oil and gas production. In recent years, rod-shaped proppant has received increasing attention for its advantages in avoiding fracture closure and enhancing conductivity. Due to its special shape, the settling process in the fracture is more complicated than that of a spherical proppant. Accurate description of the wall factor of fracture on the settling rod-shaped proppant is pivotal in predicting the transport distance of rod-shaped proppant and improving the effect of fracturing. However, few researches have been reported about the fracture wall factor on the settling rod-shaped proppant. In this study, the transparent fracture model with different width and a high-speed camera were used to record the settling process of the rod-shaped proppant in the fracture. A total of 215 tests were carried out to analyze the effects of fluid properties, the equivalent dimensionless diameter, sphericity, and Reynolds number on the wall factor, involving the ranges of the equivalent dimensionless diameter and the particle Reynolds number are 0.03 to 1.47 and 0.03–1354.14, respectively. The settling processes of rod-shaped proppant under horizontal and vertical states were studied, and two wall factor models for the two states were established, respectively. The results show that the wall factor is a function of both the equivalent dimensionless diameter and Reynolds number. Finally, the prediction models of wall factor with the prediction error of 1.70 and 4.44% are established for these two Reynolds number regions, respectively. The results of this study can further improve the performance of rod-shaped proppant in hydraulic fracturing.


Sign in / Sign up

Export Citation Format

Share Document