scholarly journals Targeted mutation breeding of flower color by taking advantage of ion-beam irradiation and genomic information

2012 ◽  
Vol 29 (3) ◽  
pp. 191-192 ◽  
Author(s):  
Atsushi Tanaka
2018 ◽  
Vol 27 (3) ◽  
Author(s):  
Hamid Khazaei ◽  
Pirjo S.A. Mäkelä ◽  
Frederick L. Stoddard

Ion beam irradiation is a potential tool for inducing novel mutations in plants. We chose three crop species (rye, linseed, and faba bean) to determine the potential of nitrogen ion beam irradiation for inducing mutations. We tested ion beam irradiation with nitrogen ions at six different fluencies (5×105, 1×106, 5×106, 1×107, 5×107, and 1×108 N-ion cm-2) on dry grains. The three studied crop species had different sensitivities to the irradiation. Increased doses of ion irradiation had more effect on survival than on germination. Rye seedlings had the lowest survival rate at high doses of irradiation and significantly higher off-type plant phenotypes than the other two species. In M1 seedlings, stunted growth, failure to complete the plant life cycle and chlorophyll mutants were observed in all three species. Terminal-inflorescence mutations and sectional chimeras in faba bean were observed in the M2 generation. We conclude that ion beam irradiation is an effective tool for mutation breeding of diverse crop species when the appropriate dose is defined.


Author(s):  
A M Okasa ◽  
M Riadi ◽  
K Toriyama ◽  
K. Ishii ◽  
Y. Hasyashi ◽  
...  

2016 ◽  
Vol 27 (5) ◽  
Author(s):  
Li-Xia Yu ◽  
Wen-Jian Li ◽  
Yan Du ◽  
Gang Chen ◽  
Shan-Wei Luo ◽  
...  

Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 98
Author(s):  
Xue Wang ◽  
Chang-Kai Liu ◽  
Bing-Jie Tu ◽  
Yan-Sheng Li ◽  
Qiu-Ying Zhang ◽  
...  

Understanding the characteristics of carbon ion beam irradiation-induced mutation is essential to its potential application in plant breeding. A carbon ion beam-mutagenized soybean population was generated from the newly released soybean variety Dongsheng 28, with irradiation dosages of 100 Gy, 120 Gy and 140 Gy. Many phenotypic variations and novel mutants with heritable tendencies including plant height mutants, sterile mutants, early mature mutants, rolled leaves and short petioles mutants, yield-related mutants and lodging-resistant mutants were identified. Diverse variations in seed size, seed protein and oil concentration were found. Increasing irradiation dosage from 100 Gy to 140 Gy increased leaf chlorophyll concentration in M1 generation, but this effect was significantly reduced in M2 generation. The activities of superoxide dismutase (SOD), peroxidase (POD) and malondialdehyde (MDA) concentration all showed wider variation in M1 and M2 generation, the only exception being that the MDA concentration was similar to the control in the M2 generation. Overall, we suggest that treating soybean seeds with carbon ion beam irradiation at a dosage of 120 Gy (80 Mev/u) could be effective in soybean mutation breeding.


2018 ◽  
Vol 44 (1) ◽  
pp. 144
Author(s):  
Tian-Peng LIU ◽  
Kong-Jun DONG ◽  
Xi-Cun DONG ◽  
Ji-Hong HE ◽  
Min-Xuan LIU ◽  
...  

2016 ◽  
Vol 7 (3) ◽  
pp. 172-179 ◽  
Author(s):  
B. A. Gurovich ◽  
K. E. Prikhodko ◽  
M. A. Tarkhov ◽  
A. G. Domantovsky ◽  
D. A. Komarov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document