scholarly journals In situ transmission electron microscopy with dual ion beam irradiation and implantation

2021 ◽  
Vol 173 ◽  
pp. 110905
Author(s):  
Meimei Li ◽  
Wei-Ying Chen ◽  
Peter M. Baldo
Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1431
Author(s):  
Seiichiro Ii ◽  
Takero Enami ◽  
Takahito Ohmura ◽  
Sadahiro Tsurekawa

Transmission electron microscopy in situ straining experiments of Al single crystals with different initial lattice defect densities have been performed. The as-focused ion beam (FIB)-processed pillar sample contained a high density of prismatic dislocation loops with the <111> Burgers vector, while the post-annealed specimen had an almost defect-free microstructure. In both specimens, plastic deformation occurred with repetitive stress drops (∆σ). The stress drops were accompanied by certain dislocation motions, suggesting the dislocation avalanche phenomenon. ∆σ for the as-FIB Al pillar sample was smaller than that for the post-annealed Al sample. This can be considered to be because of the interaction of gliding dislocations with immobile prismatic dislocation loops introduced by the FIB. The reloading process after stress reduction was dominated by elastic behavior because the slope of the load–displacement curve for reloading was close to the Young’s modulus of Al. Microplasticity was observed during the load-recovery process, suggesting that microyielding and a dislocation avalanche repeatedly occurred, leading to intermittent plasticity as an elementary step of macroplastic deformation.


2016 ◽  
Vol 22 (6) ◽  
pp. 1350-1359 ◽  
Author(s):  
Xiang Li Zhong ◽  
Sibylle Schilling ◽  
Nestor J. Zaluzec ◽  
M. Grace Burke

AbstractIn recent years, an increasing number of studies utilizing in situ liquid and/or gaseous cell scanning/transmission electron microscopy (S/TEM) have been reported. Because of the difficulty in the preparation of suitable specimens, these environmental S/TEM studies have been generally limited to studies of nanoscale structured materials such as nanoparticles, nanowires, or sputtered thin films. In this paper, we present two methodologies which have been developed to facilitate the preparation of electron-transparent samples from conventional bulk metals and alloys for in situ liquid/gaseous cell S/TEM experiments. These methods take advantage of combining sequential electrochemical jet polishing followed by focused ion beam extraction techniques to create large electron-transparent areas for site-specific observation. As an example, we illustrate the application of this methodology for the preparation of in situ specimens from a cold-rolled Type 304 austenitic stainless steel sample, which was subsequently examined in both 1 atm of air as well as fully immersed in a H2O environment in the S/TEM followed by hyperspectral imaging. These preparation techniques can be successfully applied as a general procedure for a wide range of metals and alloys, and are suitable for a variety of in situ analytical S/TEM studies in both aqueous and gaseous environments.


Catalysts ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 751 ◽  
Author(s):  
Roddatis ◽  
Lole ◽  
Jooss

The study of changes in the atomic structure of a catalyst under chemical reaction conditions is extremely important for understanding the mechanism of their operation. For in situ environmental transmission electron microscopy (ETEM) studies, this requires preparation of electron transparent ultrathin TEM lamella without surface damage. Here, thin films of Pr1-xCaxMnO3 (PCMO, x = 0.1, 0.33) and La1-xSrxMnO3 (LSMO, x = 0.4) perovskites are used to demonstrate a cross-section specimen preparation method, comprised of two steps. The first step is based on optimized focused ion beam cutting procedures using a photoresist protection layer, finally being removed by plasma-etching. The second step is applicable for materials susceptible to surface amorphization, where in situ recrystallization back to perovskite structure is achieved by using electron beam driven chemistry in gases. This requires reduction of residual water vapor in a TEM column. Depending on the gas environment, long crystalline facets having different atomic terminations and Mn-valence state, can be prepared.


2013 ◽  
Vol 19 (S2) ◽  
pp. 458-459 ◽  
Author(s):  
M. Mecklenburg ◽  
M. Brodie ◽  
W. Hubbard ◽  
E.R. White ◽  
A. Bushmaker ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2013 in Indianapolis, Indiana, USA, August 4 – August 8, 2013.


2005 ◽  
Vol 20 (7) ◽  
pp. 1785-1791 ◽  
Author(s):  
T. Vystavel ◽  
S.A. Koch ◽  
G. Palasantzas ◽  
J.Th.M. De Hosson

The structural stability of transition metal nanoclusters has been scrutinized with in situ transmission electron microscopy as a function of temperature. In particular iron, cobalt, niobium, and molybdenum clusters with diameters around 5 nm have been investigated. During exposure to air, a thin oxide shell with a thickness of 2 nm is formed around the iron and cobalt clusters, which is thermally unstable under moderate high vacuum annealing above 200 °C. Interestingly, niobium clusters oxidize only internally at higher temperatures without the formation of an oxide shell. They are unaffected under electron beam irradiation, whereas iron and cobalt undergo severe structural changes. Further, no cluster coalescence of niobium takes place, even during annealing up to 800 °C, whereas iron and cobalt clusters coalesce after decomposition of the oxide, as long as the clusters are in close contact. In contrast to niobium, molybdenum clusters do not oxidize upon annealing; they are stable under electron beam irradiation and coalesce at temperatures higher than 800 °C. In all cases, the coalescence process indicates a strong influence of the local environment of the cluster.


1991 ◽  
Vol 235 ◽  
Author(s):  
L. M. Wang ◽  
R. C. Ewing

ABSTRACTEffects of ion beam irradiation of five members of the (Mg, Fe)2SiO4 olivine series, from synthetic pure fayalite (Fe2SiO4) to naturally occurring (Mg0.88Fe0.12)2SiO4, have been studied by in situ transmission electron microscopy (TEM). Under 1.5 MeV Kr+ ion room temperature irradiations, all of the samples have been amorphized. The critical amorphization dose or the total collision energy loss required for amorphization increased rapidly with the increasing Mg:Fe ratio which coincides with an increasing melting temperature (bond strength) and an increasing average bond ionicity. A 400 keV He+ ion irradiation of (Mg0.88Fe0.12)2-SiO4, which mainly results in ionization energy loss in the sample, did not cause amorphization even at a much higher dose rate and a much higher final dose. This indicates nuclear interactions (collisions) are primarily responsible for ion beam induced amorphization. Also, high resolution electron microscopy (HREM) images of the defect structure at a low ion dose have been obtained and compared with the displacement cascade structure generated by computer modelling.


Sign in / Sign up

Export Citation Format

Share Document