scholarly journals Synthesis of the Novel 3-Benzotriazole-5-yl difluoromethyl-5-trifluoromethyl benzotriazole Nucleosides

2015 ◽  
Vol 7 (2) ◽  
pp. 99
Author(s):  
Laila Break

Triazole ring is a quite important five-membered heterocycle with three nitrogen atoms, possesses aromaticity and is an electron rich system. Triazole derivatives have been frequently becoming clinical drugs or candidates for the treatment of various types of diseases. Synthesis of the novel of 3-Benztriazole-5-yl difluoromethyl-5-trifluoromethyl benztriazole compound (3). Synthesis and chara-cterization of two new benzotriazole nucleosides with good yields by silyation method.

2015 ◽  
Vol 36 (1) ◽  
pp. 43-51
Author(s):  
Taegwon Oh ◽  
Faisal Hayat ◽  
Euna Yoo ◽  
Sang-Nae Cho ◽  
Yhun Yhung Sheen ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 6033
Author(s):  
Zbigniew Karczmarzyk ◽  
Marta Swatko-Ossor ◽  
Waldemar Wysocki ◽  
Monika Drozd ◽  
Grazyna Ginalska ◽  
...  

A series of 1,2,4-triazole derivatives were synthesized and assigned as potential anti-tuberculosis substances. The molecular and crystal structures for the model compounds C1, C12, and C13 were determined using X-ray analysis. The X-ray investigation confirmed the synthesis pathway and the assumed molecular structures for analyzed 1,2,4-triazol-5-thione derivatives. The conformational preferences resulting from rotational degrees of freedom of the 1,2,4-triazole ring substituents were characterized. The lipophilicity (logP) and electronic parameters as the energy of frontier orbitals, dipole moments, NBO net charge distribution on the atoms, and electrostatic potential distribution for all structures were calculated at AM1 and DFT/B3LYP/6-311++G(d,p) level. The in vitro test was done against M. tuberculosis H37Ra, M. phlei, M. smegmatis, and M. timereck. The obtained results clearly confirmed the antituberculosis potential of compound C4, which turned out to be the most active against Mycobacterium H37Ra (MIC = 0.976 μg/mL), Mycobaterium pheli (MIC = 7.81 μg/mL) and Mycobacerium timereck (62.6 μg/mL). Satisfactory results were obtained with compounds C8, C11, C14 versus Myc. H37Ra, Myc. pheli, Myc. timereck (MIC = 31.25−62.5 μg/mL). The molecular docking studies were carried out for all investigated compounds using the Mycobacterium tuberculosis cytochrome P450 CYP121 enzyme as molecular a target connected with antimycobacterial activity.


Author(s):  
Paranjeet Kaur ◽  
Gopal L. Khatik

<p class="Default"><strong>Objective: </strong>To identify the novel and simple bioactive antiandrogens, that can overcome to side effects as well as drug resistance.</p><p class="Default"><strong>Methods: </strong>The AutoDock Vina (ADT) 1.5.6 software is used for molecular docking purposes. The molecular structures were drawn in ChemBiodraw ultra and by the help of ChemBiodraw 3D, all structures were energy minimized by MM2 method and converted to pdb extension file which is readable at the ADT interface.</p><p class="Default"><strong>Results: </strong>Total ten compounds from both series were shown better binding affinity than <em>R</em>-bicalutamide including oxadiazole and triazole series. Among these pk42 and pk46 were studied in-depth which showed best binding affinity to the androgen receptor. The <em>cis</em>-isomers were found better than their <em>trans</em>-isomer.</p><p><strong>Conclusion: </strong>Novel 5-styryl-1,2,4-oxadiazole/triazole derivatives were studied through molecular modeling using Autodock Vina. The potent compounds which showed better binding affinity than <em>R</em>-bicalutamide like pk24 and 46 were further analyzed for their interactions. The conformational effect also found significant in binding to the androgen receptor.</p>


2021 ◽  
Vol 19 ◽  
Author(s):  
Tangella Nagendra Prasad ◽  
Yeruva Pavankumar Reddy ◽  
Poorna Chandrasekhar Settipalli ◽  
Vadiga Shanthi Kumar ◽  
Eeda Koti Reddy ◽  
...  

Background: 1,2,4-triazoles scaffolds display significant biological activities due to hydrogen bonding, solubility, dipole character, and rigidity Objective: The core motif of 1,2,4-triazoles plays a vital role in clinical drugs such as Rizatriptan (anti-migraine), Ribavirin (antiviral), anastrozole (anticancer), etizolam (anxiolytic), estazolam (anticonvulsant), alprazolam (anti-hypnotic), letrozole (aromatase inhibitor), loreclezole (anticonvulsant), trazadone (antidepressant) etc Method: Epoxide ring opening of tert-butyl 6-oxa-3-azabicyclo [3.1.0] hexane-3-carboxylate followed by methylation under basic conditions and de-protection gave the corresponding trans 1-(4-methoxypyrrolidin-3-yl)-1H-1,2,4-triazole hydrochloride salt as the precursor. This precursor on reaction with substituted benzoyl chlorides and benzyl bromides gave the desired amide and amine products Results: A library of 14 N-substituted pyrrolidine derivatives i.e. trans3-methoxy-4-(1H-1,2,4-triazol-1-yl) pyrrolidin-1-yl) (phenyl)methanone and trans 1-benzyl-4-methoxypyrrolidin-3-yl)-1H-1,2,4-triazole were prepared Conclusion: Eight novel amides (6a-h) and six amines (8a-f) derivatives were synthesized using 1-(4-methoxypyrrolidin-3-yl)-1H-1,2,4-triazole 4 salt with substituted benzoyl chlorides and benzyl bromides.


2020 ◽  
Vol 17 (12) ◽  
pp. 1502-1515
Author(s):  
Leyla Yurttaş ◽  
Asaf Evrim Evren ◽  
Aslıhan Kubilay ◽  
Halide Edip Temel ◽  
Gülşen Akalın Çiftçi

Background: Cancer is the name given to various diseases that are mainly uncontrolled, related to cell growth and can affect various organs. Among them, lung cancer is the one, which, in its earliest stages, is difficult to diagnose, and it is asymptomatic until the disease progresses. Triazole ring is an important heterocyclic ring known with various pharmacological activities. Objective: It is aimed to synthesize and characterize novel 1,2,4-triazole derivatives and screen them for in vitro antiproliferative activity and binding analysis through docking studies. Method: In this study, we have synthesized new 2-[[5-[(4-aminophenoxy)methyl]-4-phenyl-4H- 1,2,4-triazol-3-yl]thio]-N-(substituted aryl)acetamide (5a-h) derivatives and investigated their anticancer activities against human lung cancer (A549) and mouse embryo fibroblast cell lines (NIH/3T3) by MTT, flow cytometric, caspase-3 and matrix metalloproteinase-9 (MMP-9) inhibition assays. Results: Compounds 5f, 5g and 5h showed the highest cytotoxicity and caused significant apoptosis. These compounds inhibited MMP-9, slightly whereas they did not effect caspase-3. Conclusion: 5f namely, N-(5-acetyl-4-methylthiazol-2-yl)-2-((5-((4-aminophenoxy)methyl)-4- phenyl-4H-1,2,4-triazol-3-yl)thio)acetamide exhibited as the most active compound with selective cytotoxicity and the highest MMP-9 inhibition. Besides, molecular modelling assessment was signified that antiproliferative activity of the compounds 5f, 5g and 5h was through a slight MMP-9 inhibition pathway.


2014 ◽  
Vol 70 (3) ◽  
pp. o363-o364
Author(s):  
Nada Kheira Sebbar ◽  
Mohammed El Fal ◽  
El Mokhtar Essassi ◽  
Mohamed Saadi ◽  
Lahcen El Ammari

The asymmetric unit of the title compound, C18H16N4OS, contains two independent molecules of similar conformation, the most relevant difference being the dihedral angle formed by the benzene rings [57.8 (2) and 52.7 (2)°]. The six-membered heterocycle of the benzothiazine fragment exhibits a screw-boat conformation in both molecules. The plane through the triazole ring is nearly perpendicular to those through the fused and terminal benzene rings [dihedral angles of 74.2 (2) and 83.2 (2)° in one molecule, and 77.8 (2) and 82.9 (2)° in the other]. In the crystal, molecules are linked by C—H...N and C—H...O hydrogen bonds into chains parallel to thea-axis direction. The crystal used was a non-merohedral twin, the refined ratio of twin components being 0.85 (10):15 (10).


2004 ◽  
Vol 76 (9) ◽  
pp. 1691-1703 ◽  
Author(s):  
N. N. Makhova ◽  
I. V. Ovchinnikov ◽  
A. S. Kulikov ◽  
S. I. Molotov ◽  
E. L. Baryshnikova

Monocyclic rearrangements of azoles are extensively studied as alternative methods for the preparation of new heterocyclic systems. The present work is devoted to investigation of monocyclic and cascade rearrangements of 1,2,5-oxadiazole 2-oxide (furoxan) derivatives. It was found during investigations that rearrangements of furoxan ring had some peculiarities in comparison with analogous rearrangements of other azoles. Therefore, three different kinds of rearrangements were found. The first of them occurred through a dinitroso-ethylene intermediate and resulted in the synthesis of 1,2,3-triazole 1-oxides [oximes of 5-acetyl-4-phenyl(methyl)-2-phenyl-2H -1,2,3-triazole 1-oxides and 2-(furoxan-4-yl)-4-nitro-5-R-2H -1,2,3-triazole 1-oxides ]by thermal recyclization accordingly of 3-methyl-4-acetyl(benzoyl)furoxans phenylhydrazones and 3,3'-(R)-disubstituted-4,4'-azofuroxans. The latter reaction was performed in an oxidizing medium. The second kind of rearrangement (classical variant) was the synthesis of new azoles containing the 1-nitroalkyl substituent. These rearrangements were performed using three examples: base-induced interconversion of furoxanyl ketone phenylhydrazones into 5-(1-nitroalkyl)-2H-1,2,3-triazole derivatives and of 1-alkyl(aryl)-3-(furoxan-4-yl)amidines into 1-substituted 3-(1-nitroalkyl)-1,2,4-triazoles as well as a thermally induced rearrangement of 4-thioureido-3-R-furoxans into derivatives of 5-amino-3-(1-nitroalkyl)-1,2,4-thiadiazole including (5-amino-1,2,4-thiadiazol-3-yl)nitro-formaldehyde arylhydrazones (where R =N=N –Ar). Rearrangements of the third kind were those of the cascade type. Three new cascade rearrangements of azofuroxan derivatives [3,3'-azo-4,4'-bis(acetylamino)furoxans, 3-arylazo-4-acetylaminofuroxans, and 3-arylazo-4-(3- ethoxycarbonylureido)furoxans] into 4-amino-5-nitro-2H-1,2,3-triazole derivatives were discovered. These three reactions were assumed to include two consecutive (cascade) rearrangements: a 1,2,4-oxadiazole ring was formed at the first step and then transformed into a 1,2,3-triazole ring with the participation of an azo group.


2019 ◽  
Vol 31 (2) ◽  
pp. 691-699 ◽  
Author(s):  
Javad Ghanaat ◽  
Mohammad A. Khalilzadeh ◽  
Daryoush Zareyee ◽  
Mohammadreza Shokouhimehr ◽  
Rajender S. Varma

Sign in / Sign up

Export Citation Format

Share Document