core motif
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 47)

H-INDEX

27
(FIVE YEARS 4)

2021 ◽  
Vol 19 ◽  
Author(s):  
Tangella Nagendra Prasad ◽  
Yeruva Pavankumar Reddy ◽  
Poorna Chandrasekhar Settipalli ◽  
Vadiga Shanthi Kumar ◽  
Eeda Koti Reddy ◽  
...  

Background: 1,2,4-triazoles scaffolds display significant biological activities due to hydrogen bonding, solubility, dipole character, and rigidity Objective: The core motif of 1,2,4-triazoles plays a vital role in clinical drugs such as Rizatriptan (anti-migraine), Ribavirin (antiviral), anastrozole (anticancer), etizolam (anxiolytic), estazolam (anticonvulsant), alprazolam (anti-hypnotic), letrozole (aromatase inhibitor), loreclezole (anticonvulsant), trazadone (antidepressant) etc Method: Epoxide ring opening of tert-butyl 6-oxa-3-azabicyclo [3.1.0] hexane-3-carboxylate followed by methylation under basic conditions and de-protection gave the corresponding trans 1-(4-methoxypyrrolidin-3-yl)-1H-1,2,4-triazole hydrochloride salt as the precursor. This precursor on reaction with substituted benzoyl chlorides and benzyl bromides gave the desired amide and amine products Results: A library of 14 N-substituted pyrrolidine derivatives i.e. trans3-methoxy-4-(1H-1,2,4-triazol-1-yl) pyrrolidin-1-yl) (phenyl)methanone and trans 1-benzyl-4-methoxypyrrolidin-3-yl)-1H-1,2,4-triazole were prepared Conclusion: Eight novel amides (6a-h) and six amines (8a-f) derivatives were synthesized using 1-(4-methoxypyrrolidin-3-yl)-1H-1,2,4-triazole 4 salt with substituted benzoyl chlorides and benzyl bromides.


2021 ◽  
Author(s):  
Kazunori Shinomiya ◽  
Aljoscha Nern ◽  
Ian Meinertzhagen ◽  
Stephen M Plaza ◽  
Michael B Reiser

The detection of visual motion enables sophisticated animal navigation, and studies in flies have provided profound insights into the cellular and circuit basis of this neural computation. The fly's directionally selective T4 and T5 neurons respectively encode ON and OFF motion. Their axons terminate in one of four retinotopic layers in the lobula plate, where each layer encodes one of four cardinal directions of motion. While the input circuitry of the directionally selective neurons has been studied in detail, the synaptic connectivity of circuits integrating T4/T5 motion signals is largely unknown. Here we report a 3D electron microscopy reconstruction, wherein we comprehensively identified T4/T5's synaptic partners in the lobula plate, revealing a diverse set of new cell types and attributing new connectivity patterns to known cell types. Our reconstruction explains how the ON and OFF motion pathways converge. T4 and T5 cells that project to the same layer, connect to common synaptic partners symmetrically, that is with similar weights, and also comprise a core motif together with bilayer interneurons, detailing the circuit basis for computing motion opponency. We discovered pathways that likely encode new directions of motion by integrating vertical and horizontal motion signals from upstream T4/T5 neurons. Finally, we identify substantial projections into the lobula, extending the known motion pathways and suggesting that directionally selective signals shape feature detection there. The circuits we describe enrich the anatomical basis for experimental and computations analyses of motion vision and bring us closer to understanding complete sensory-motor pathways.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yu Zou ◽  
Lulu Guan

Abnormal aggregation of the microtubule-associated protein Tau is closely associated with tauopathies, including Alzheimer’s disease and chronic traumatic encephalopathy. The hexapeptide 275VQIINK280 (PHF6*), a fibril-nucleating core motif of Tau, has been shown to play a vital role in the aggregation of Tau. Mounting experiment evidence demonstrated the acetylation of a single-lysine residue K280 in the PHF6* was a critical event for the formation of pathological Tau amyloid deposits. However, the underlying mechanisms by which K280 acetylation affects Tau aggregation at the atomic level remain elusive. In this work, we performed replica exchange molecular dynamics simulations to investigate the influence of acetylation of K280 on the aggregation of PHF6*. Our simulations show that acetylation of K280 not only enhances the self-assembly capability of PHF6* peptides but also increases the β-sheet structure propensity of the PHF6*. The inter-molecular interactions among PHF6* peptides are strengthened by the acetylation of K280, resulting in an increased ordered β-sheet-rich conformations of the PHF6* assemblies along with a decrease of the structural diversity. The residue-pairwise contact frequency analysis shows that K280 acetylation increases the interactions among the hydrophobic chemical groups from PHF6* peptides, which promotes the aggregation of PHF6*. This study offers mechanistic insights into the effects of acetylation on the aggregation of PHF6*, which will be helpful for an in-depth understanding of the relationship between acetylation and Tau aggregation at the molecular level.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Diana Hofmann ◽  
Niharika Garg ◽  
Simone Grässle ◽  
Sylvia Vanderheiden ◽  
Bruno Gideon Bergheim ◽  
...  

AbstractCnidarians are characterized by the possession of stinging organelles, called nematocysts, which they use for prey capture and defense. Nematocyst discharge is controlled by a mechanosensory apparatus with analogies to vertebrate hair cells. Members of the transient receptor potential (TRPN) ion channel family are supposed to be involved in the transduction of the mechanical stimulus. A small molecule screen was performed to identify compounds that affect nematocyst discharge in Hydra. We identified several [2.2]paracyclophanes that cause inhibition of nematocyst discharge in the low micro-molar range. Further structure–activity analyses within the compound class of [2.2]paracyclophanes showed common features that are required for the inhibitory activity of the [2.2]paracyclophane core motif. This study demonstrates that Hydra can serve as a model for small molecule screens targeting the mechanosensory apparatus in native tissues.


2021 ◽  
Author(s):  
Peng Mao ◽  
Mingrui Duan ◽  
Smitha Sivapragasam ◽  
Jacob S Antony ◽  
Jenna Ulibarri ◽  
...  

DNA base damage arises frequently in living cells and needs to be removed by base excision repair (BER) to prevent mutagenesis and genome instability. Both the formation and repair of base damage occur in chromatin and are conceivably affected by DNA-binding proteins such as transcription factors (TFs). However, to what extent TF binding affects base damage distribution and BER in cells is unclear. Here, we used a genome-wide damage mapping method, N-methylpurine-sequencing (NMP-seq), to characterize alkylation damage distribution and BER at TF binding sites in yeast cells treated with the alkylating agent methyl methanesulfonate (MMS). Our data shows that alkylation damage formation was mainly suppressed at the binding sites of yeast TFs Abf1 and Reb1, but individual hotspots with elevated damage levels were also found. Additionally, Abf1 and Reb1 binding strongly inhibits BER in vivo and in vitro, causing slow repair both within the core motif and its adjacent DNA. The observed effects are caused by the TF-DNA interaction, because damage formation and BER can be restored by depletion of Abf1 or Reb1 protein from the nucleus. Thus, our data reveal that TF binding significantly modulates alkylation base damage formation and inhibits repair by the BER pathway. The interplay between base damage formation and BER may play an important role in affecting mutation frequency in gene regulatory regions.


2021 ◽  
Author(s):  
Irene Miriam Kaplow ◽  
Abhimanyu Banerjee ◽  
Chuan-Sheng Foo

Background: Many transcription factors (TFs), such as multi zinc-finger (ZF) TFs, have multiple DNA binding domains (DBDs) with multiple components, and deciphering the DNA binding motifs of individual components is a major challenge. One example of such a TF is CCCTC-binding factor (CTCF), a TF with eleven ZFs that plays a variety of roles in transcriptional regulation, most notably anchoring DNA loops. Previous studies found that CTCF zinc fingers (ZFs) 3-7 bind CTCF's core motif and ZFs 9-11 bind a specific upstream motif, but the motifs of ZFs 1-2 have yet to be identified. Results: We developed a new approach to identifying the binding motifs of individual DBDs of a TF through analyzing chromatin immunoprecipitation sequencing (ChIP-seq) experiments in which a single DBD is mutated: we train a deep convolutional neural network to predict whether wild-type TF binding sites are preserved in the mutant TF dataset and interpret the model. We applied this approach to mouse CTCF ChIP-seq data and, in addition to identifying the known binding preferences of CTCF ZFs 3-11, we identified a GAG binding motif for ZF1 and a weak ATT binding motif for ZF2. We analyzed other CTCF datasets to provide additional evidence that ZFs 1-2 interact with the motifs we identified, and we found that the presence of the motif for ZF1 is associated with Ctcf peak strength. Conclusions: Our approach can be applied to any TF for which in vivo binding data from both the wild-type and mutated versions of the TF are available, and our findings provide an unprecedently comprehensive understanding of the binding preferences of CTCF's DBDs.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1746
Author(s):  
Marie Kubota ◽  
Takao Hashiguchi

Mumps virus (MuV) is an important human pathogen that causes parotitis, orchitis, oophoritis, meningitis, encephalitis, and sensorineural hearing loss. Although mumps is a vaccine-preventable disease, sporadic outbreaks have occurred worldwide, even in highly vaccinated populations. MuV not only causes systemic infection but also has a unique tropism to glandular tissues and the central nervous system. In general, tropism can be defined by multiple factors in the viral life cycle, including its entry, interaction with host factors, and host-cell immune responses. Although the underlying mechanisms of MuV tropism remain to be fully understood, recent studies on virus–host interactions have provided insights into viral pathogenesis. This review was aimed at summarizing the entry process of MuV by focusing on the glycan receptors, particularly the recently identified receptors with a trisaccharide core motif, and their interactions with the viral attachment proteins. Here, we describe the receptor structures, their distribution in the human body, and the recently identified host factors for MuV and analyze their relationship with MuV tropism.


2021 ◽  
Author(s):  
Alexander Gabriel Caschera

A series of novel quaternary ammonium compounds (QACs) previously synthesized by the Foucher Research Group containing the core motif R1-(CH2)3-N+ (CH3)2-(CH2)3-R2, where R1 represents functional groups responsible for anchoring the compound to various substrates and R2 represents moieties responsible for altering the activity and surface properties of coated materials are described. R1 groups include benzophenone (-O-C6H4-C(O)-C6H5) 1a-11a for anchoring to polymer surfaces, and organosilane (-Si(OCH3) 3b-10b for anchoring to textiles and fabrics, while R2 groups include linear alkyl chains (-(CH2)n-CH3; n = 11, 17) 1-2 and aryl or alkyl sulfonamide containing moieties (-NH-SO2-CXHY, x = 2-10; y = 5-11) 3-11. These compounds were tested for antimicrobial activity at solid/air interfaces (LDI) and were found highly effective against representative Gram-positive and Gram-negative bacteria (except 7a-8a, 11a). Selective solid/liquid antimicrobial testing (LRI) was performed on 1a, 5a and only 5a was found to be highly effective against Gram-positive bacteria.


2021 ◽  
Author(s):  
Alexander Gabriel Caschera

A series of novel quaternary ammonium compounds (QACs) previously synthesized by the Foucher Research Group containing the core motif R1-(CH2)3-N+ (CH3)2-(CH2)3-R2, where R1 represents functional groups responsible for anchoring the compound to various substrates and R2 represents moieties responsible for altering the activity and surface properties of coated materials are described. R1 groups include benzophenone (-O-C6H4-C(O)-C6H5) 1a-11a for anchoring to polymer surfaces, and organosilane (-Si(OCH3) 3b-10b for anchoring to textiles and fabrics, while R2 groups include linear alkyl chains (-(CH2)n-CH3; n = 11, 17) 1-2 and aryl or alkyl sulfonamide containing moieties (-NH-SO2-CXHY, x = 2-10; y = 5-11) 3-11. These compounds were tested for antimicrobial activity at solid/air interfaces (LDI) and were found highly effective against representative Gram-positive and Gram-negative bacteria (except 7a-8a, 11a). Selective solid/liquid antimicrobial testing (LRI) was performed on 1a, 5a and only 5a was found to be highly effective against Gram-positive bacteria.


2021 ◽  
Author(s):  
Hadeel Khamis ◽  
Sergei Rudnizky ◽  
Philippa Melamed ◽  
Ariel Kaplan

The interaction of transcription factors with their response elements in DNA is emerging as a highly complex process, whose characterization requires measuring the full distribution of binding and dissociation times in a well-controlled assay. Here, we present a single-molecule assay that exploits the thermal fluctuations of a DNA hairpin, to detect the association and dissociation of individual, unlabeled transcription factors. We demonstrate this new approach by following the binding of Egr1 to its consensus motif and the three binding sites found in the promoter of the Lhb gene, and find that both association and dissociation are modulated by the 9 bp core motif and the sequences around it. In addition, CpG methylation modulates the dissociation kinetics in a sequence and position-dependent manner, which can both stabilize or destabilize the complex. Together, our findings show how variations in sequence and methylation patterns synergistically extend the spectrum of a protein's binding properties, and demonstrate how the proposed approach can provide new insights on the function of transcription factors.


Sign in / Sign up

Export Citation Format

Share Document