scholarly journals The Extended Generalized Gamma Geometric Distribution

2017 ◽  
Vol 5 (4) ◽  
pp. 48
Author(s):  
Juliano Bortolini ◽  
Marcelino A. R. Pascoa ◽  
Renato Ribeiro De Lima ◽  
Anderson C. S. Oliveira

We propose and study the so-called extended generalized gamma geometric distribution. The proposed distribution has five parameters and it can be accommodate increasing, decreasing, bathtub and unimodal shaped hazard functions. The new distribution has a large number of well-known lifetime special sub-models such as the generalized gamma geometric, Weibull geometric, gamma geometric, exponential geometric, Rayleigh geometric, half-normal geometric among others. We provide a mathematical treatment of the new distribution including explicit expressions for moments, moment generating function, mean deviations, reliability and order statistics. The method of maximum likelihood and a Bayesian procedure are adopted for estimating the model parameters. Finally, an application of the new distribution is illustrated in a real data sets.

Author(s):  
Bassa Shiwaye Yakura ◽  
Ahmed Askira Sule ◽  
Mustapha Mohammed Dewu ◽  
Kabiru Ahmed Manju ◽  
Fadimatu Bawuro Mohammed

This article uses the odd Lomax-G family of distributions to study a new extension of the Kumaraswamy distribution called “odd Lomax-Kumaraswamy distribution”. In this article, the density and distribution functions of the odd Lomax-Kumaraswamy distribution are defined and studied with many other properties of the distribution such as the ordinary moments, moment generating function, characteristic function, quantile function, reliability functions, order statistics and other useful measures. The model parameters are estimated by the method of maximum likelihood. The goodness-of-fit of the proposed distribution is demonstrated using two real data sets.


Author(s):  
Ibrahim Elbatal ◽  
A. Aldukeel

In this article, we introduce a new distribution called the McDonald Erlangtruncated exponential distribution. Various structural properties including explicit expressions for the moments, moment generating function, mean deviation of the new distribution are derived. The estimation of the model parameters is performed by maximum likelihood method. The usefulness of the new distribution is illustrated by two real data sets. The new model is much better than other important competitive models in modeling relief times and survival times data sets.


2020 ◽  
Vol 4 (2) ◽  
pp. 327-340
Author(s):  
Ahmed Ali Hurairah ◽  
Saeed A. Hassen

In this paper, we introduce a new family of continuous distributions called the beta transmuted Dagum distribution which extends the beta and transmuted familys. The genesis of the beta distribution and transmuted map is used to develop the so-called beta transmuted Dagum (BTD) distribution. The hazard function, moments, moment generating function, quantiles and stress-strength of the beta transmuted Dagum distribution (BTD) are provided and discussed in detail. The method of maximum likelihood estimation is used for estimating the model parameters. A simulation study is carried out to show the performance of the maximum likelihood estimate of parameters of the new distribution. The usefulness of the new model is illustrated through an application to a real data set.


Author(s):  
Salma Omar Bleed ◽  
Arwa Elsunousi Ali Abdelali

The distribution of ArcSine will be developed to another new distribution using the Quadratic Rank Transmutation (QRT) method proposed by Shaw and Buckley (2007). The new distribution will be called the Transmuted ArcSine distribution, some of its mathematical characteristics such as variance, expectation, residual function, risk function, moments, moment generating function and characteristic function will be presented. The model parameters will be estimated by the maximum likelihood method. Finally, two real data sets are analyzed to illustrates the usefulness of the TAS distribution.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Faton Merovci ◽  
Vikas Kumar Sharma

We introduce the new continuous distribution, the so-called beta-Lindley distribution that extends the Lindley distribution. We provide a comprehensive mathematical treatment of this distribution. We derive the moment generating function and therth moment thus, generalizing some results in the literature. Expressions for the density, moment generating function, andrth moment of the order statistics also are obtained. Further, we also discuss estimation of the unknown model parameters in both classical and Bayesian setup. The usefulness of the new model is illustrated by means of two real data sets. We hope that the new distribution proposed here will serve as an alternative model to other models available in the literature for modelling positive real data in many areas.


Stats ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 77-91
Author(s):  
Broderick Oluyede ◽  
Boikanyo Makubate ◽  
Adeniyi Fagbamigbe ◽  
Precious Mdlongwa

A new compound distribution called Burr XII-Weibull-Logarithmic (BWL) distribution is introduced and its properties are explored. This new distribution contains several new and well known sub-models, including Burr XII-Exponential-Logarithmic, Burr XII-Rayleigh-Logarithmic, Burr XII-Logarithmic, Lomax-Exponential-Logarithmic, Lomax–Rayleigh-Logarithmic, Weibull, Rayleigh, Lomax, Lomax-Logarithmic, Weibull-Logarithmic, Rayleigh-Logarithmic, and Exponential-Logarithmic distributions. Some statistical properties of the proposed distribution including moments and conditional moments are presented. Maximum likelihood estimation technique is used to estimate the model parameters. Finally, applications of the model to real data sets are presented to illustrate the usefulness of the proposed distribution.


Author(s):  
Salman Abbas ◽  
Gamze Ozal ◽  
Saman Hanif Shahbaz ◽  
Muhammad Qaiser Shahbaz

In this article, we present a new generalization of weighted Weibull distribution using Topp Leone family of distributions. We have studied some statistical properties of the proposed distribution including quantile function, moment generating function, probability generating function, raw moments, incomplete moments, probability, weighted moments, Rayeni and q th entropy. The have obtained numerical values of the various measures to see the eect of model parameters. Distribution of of order statistics for the proposed model has also been obtained. The estimation of the model parameters has been done by using maximum likelihood method. The eectiveness of proposed model is analyzed by means of a real data sets. Finally, some concluding remarks are given.


2019 ◽  
Vol 16 (4) ◽  
pp. 0937
Author(s):  
Saad Et al.

In this paper, for the first time we introduce a new four-parameter model called the Gumbel- Pareto distribution by using the T-X method. We obtain some of its mathematical properties. Some structural properties of the new distribution are studied. The method of maximum likelihood is used for estimating the model parameters. Numerical illustration and an application to a real data set are given to show the flexibility and potentiality of the new model.


Author(s):  
Mohamed G. Khalil ◽  
Wagdy M. Kamel

A new three-parameter life parametric model called the Marshall-Olkin generalized Weibull is defined and studied. Relevant properties are mathematically derived and analyzed. The new density exhibits various important symmetric and asymmetric shapes with different useful kurtosis. The new failure rate can be “constant”, “upside down-constant (reversed U-HRF-constant)”, “increasing then constant”, “monotonically increasing”, “J-HRF” and “monotonically decreasing”. The method of maximum likelihood is employed to estimate the unknown parameters. A graphical simulation is performed to assess the performance of the maximum likelihood estimation. We checked and proved empirically the importance, applicability and flexibility of the new Weibull model in modeling various symmetric and asymmetric types of data. The new distribution has a high ability to model different symmetric and asymmetric types of data.


Author(s):  
I. Elbatal ◽  
Mohamed G. Khalil

A new four-parameter distribution called the beta Lindley-geometric distribution is proposed. The hazard rate function of the new model can be constant, decreasing, increasing, upside down bathtub or bathtub failure rate shapes. Various structural properties including of the new distribution are derived. The estimation of the model parameters is performed by maximum likelihood method. The usefulness of the new distribution is illustrated using a real data set.


Sign in / Sign up

Export Citation Format

Share Document