scholarly journals Integrating Soybean Residues With Nitrogen Fertilizer for Improved Maize Production in Eastern Uganda

2019 ◽  
Vol 11 (8) ◽  
pp. 206
Author(s):  
B. Sadina ◽  
A. Amoding ◽  
R. Amayo ◽  
M. Biruma

Soybean has become one of the dominant crops in Ugandan farming systems; however the contribution of its residues to improve soil and crop productivity is less known. To investigate the role of soybean residues to enhance crop productivity, researcher-managed experiments were conducted for two seasons (2011B and 2012A) in Namayingo and Tororo districts, representing the L. Victoria crescent, and South-eastern L. Kyoga basin agro-ecological zones, respectively. Factorial treatments of three levels of soybean residues (0, 2 and 4 t ha-1) and four levels of N fertilizer (0, 30, 60 and 120 kg ha-1 N) in form of urea were applied in maize fields in a randomized complete block design so as to; determine the optimum nutrient combination for maize, and establish the added yield benefits, if any, of using soybean residues with N fertilizer in maize production. Site yields varied significantly (p < 0.001), with higher maize yields obtained in Namayingo compared to Tororo. Significantly (p < 0.05) higher maize grain yields were obtained with the highest nutrient input combinations of 2 t ha-1 residue and 60 kg ha-1 N (yield increment of 71.72% above the control) in Namayingo district and 4 t ha-1 residue combined with120 kg ha-1 N increased maize grain yield by 140.69% above the control in Tororo. The added maize grain yield benefits ranged from 2540 kg grain ha-1 to 3250 kg grain ha-1 in Namayingo and from 2000 kg grain ha-1 to 2310 kg grain ha-1 in Tororo. Combined use of soybean residue with N fertilizer has been found to have agronomic yield benefits to maize production.

2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
S. Adjei-Nsiah

The effects of palm bunch ash (PBA) and mineral fertilizer application on grain yield and nutrient uptake in maize and soil chemical properties were studied in both the major and minor rainy seasons in the semi-deciduous forest agro-ecological zone of Ghana. In both the major and minor rainy seasons, the response of maize to four levels (0, 2, 4, and 6 tons per hectare) of palm bunch ash and 200 kg per hectare of NPK (15-15-15) application was evaluated using randomised complete block design. Results of the study showed that application of palm bunch ash significantly (P<0.05) increased soil pH, soil phosphorus, and exchangeable cations. Maize grain yield varied significantly (P<0.05) among the different treatments in both the major and minor rainy seasons. The highest maize grain yield of 4530 and 6120 kg ha-1was obtained at PBA application rate of 2 tonsha-1for the major and minor rainy seasons, respectively.


2018 ◽  
Vol 10 (9) ◽  
pp. 333 ◽  
Author(s):  
Ana Luiza Privado Martins ◽  
Glécio Machado Siqueira ◽  
Emanoel Gomes de Moura ◽  
Raimunda Alves Silva ◽  
Anágila Janenis Cardoso Silva ◽  
...  

Soil fauna play an important role in ecosystems, and in this context, it is important to better understand how the abiotic and biotic drivers of these organisms interact. We hypothesize that soil fauna are affected by different soil management practices, which has an influence on maize grain yields. The aim of this study was to evaluate the structure of soil fauna under different soil management practices and their associations with maize grain yield. The experiment was conducted in Maranhão, Brazil, in an area divided into 24 plots of 4 × 10 m in a randomized block design with six treatments with four replicates (R). Pitfall traps were placed in the area. The treatments were Leucaena leucocephala-Leucaena (L), nitrogen (N), humic acid + nitrogen (HA + N), nitrogen + Leucaena (N + L), humic acid + Leucaena (HA + L) and humic acid + nitrogen + Leucaena (HA + N + L). The soil fauna dominance, abundance, richness, Shannon-Wiener diversity index, Pielou evenness index and maize grain yield were determined. Formicidae was clearly affected by management with Leucaena, while Coleoptera was affected by management with nitrogen. Despite this, Isopoda and Diplura were the only groups associated with the maize yield. Although fauna abundance did not differ among treatments, it was related to the yield. This study confirms that the abundance and some taxa of soil fauna can influence yield and that these organisms can be used to increase agricultural sustainability.


2012 ◽  
Vol 49 (1) ◽  
pp. 3-18 ◽  
Author(s):  
E. RUTTO ◽  
J. P. VOSSENKEMPER ◽  
J. KELLY ◽  
B. K. CHIM ◽  
W. R. RAUN

SUMMARYCorrect placement of side dress nitrogen (N) fertilizer could increase nitrogen use efficiency (NUE) and maize yield production. Field studies were established to evaluate application of midseason (V8 to V10), variable liquid urea ammonia nitrate (28%), N rates (0, 45, 90 and 134 kg N ha−1) and different application distances (0, 10, 20 and 30 cm) away from the maize row on grain yield and NUE at Haskell and Hennessey in 2009, Efaw in 2010 and Lake Carl Blackwell, Oklahoma in 2009 and 2010. A randomized complete block design with three replications was used throughout the study. Results indicated that maize grain yield in sites with adequate rainfall increased significantly (p < 0.05) with N rate, and poor N response was recorded in sites with low rainfall. Across sites and seasons, varying side dress N application distance away from the maize row did not significantly (p < 0.05) influence maize grain yield and NUE even with no prep-plant applied. Environments with adequate rainfall distribution had better maize grain yields when high side dress N rates (90 and 134 kg N ha−1) were applied 0 to 10 cm, and a higher NUE when 45 kg N ha−1 was applied 0 to 20 cm away from the maize row. For low N rates (45 kg N ha−1), increased maize grain yield and NUE were achieved when side dress N was applied 0 to 20 cm away from the maize row at locations with low rainfall distribution. Across sites and seasons, increasing side dress N to 134 kg N ha−1 contributed to a general decline in mean NUE to as low as 4%, 35%, 10%, 51% at Hennessey, Efaw, LCB (2009) and LCB (2010) respectively.


Water SA ◽  
2019 ◽  
Vol 45 (4 October) ◽  
Author(s):  
ZM Ogbazghi ◽  
EH Tesfamariam ◽  
JG Annandale

When applying municipal sludge according to crop N requirements, the primary aim should be optimizing sludge application rates in order to maximize crop yield and minimize environmental impacts through nitrate leaching. Nitrate leaching and subsequent groundwater contamination is potentially one of the most important factors limiting the long-term viability of sludge application to agricultural soils. This study assessed maize grain yield and potential nitrate leaching from sludge-amended soils, using the SWB-Sci model, based on crop nitrogen requirements and inorganic fertilizer. The following hypotheses were tested using the SWB­-Sci model and 20 years of measured weather data for 4 of the 6 South African agro-ecological zones. Under dryland maize cropping, grain yield and nitrate leaching from sludge-amended soils compared to inorganic fertilizer: (1) will remain the same across agro-ecological zones and sites, (2) will not vary across seasons at a specific site, and (3) will not vary across soil textures. Model simulations showed that annual maize grain yield and nitrate leaching varied significantly (P > 0.05) across the four agro-ecological zones, both for sludge-amended and inorganic fertilizer amended soils. The annual maize grain yield and nitrate leaching from sludge-amended soils were 12.6 t∙ha-1 and 32.7 kgNO3-N∙ha−1 compared to 10.2 t∙ha-1 and 43.2 kgNO3-N∙ha−1 for inorganic fertilizer in the super-humid zone. Similarly, maize grain yield and nitrate leaching varied significantly across seasons and soil textures for both sludge and inorganic fertilizer amended soils. However, nitrate losses were lower from sludge-amended soils (2.3–8.2%) compared to inorganic fertilizer (11.1–26.7%) across all zones in South Africa. Therefore, sludge applied according to crop N requirements has a lower environmental impact from nitrate leaching than commercial inorganic fertilizer. Further validation of these findings is recommended, using field studies, and monitoring potential P accumulation for soils that received sludge according to crop N requirements.


2019 ◽  
Vol 11 (2) ◽  
pp. 286
Author(s):  
Vanderson Vieira Batista ◽  
Paulo Fernando Adami ◽  
Pedro Valério Dutra de Moraes ◽  
Karine Fuschter Oligini ◽  
Cleverson Luiz Giacomel ◽  
...  

The success of maize + soybean intercrop depends on the plant arrangement. An experiment was carried out to evaluate different row arrangements on intercrop forage yield, silage quality and maize grain yield in relation to maize as a sole crop. The experiment was set up with a randomized complete block design with eight row arrangements between maize and Soybean. Maize biomass yield among crop arrangements were similar, although, lower than the maize sole crop. On the other hand, these treatments showed higher soybean biomass yield, which in turn increased silage crude protein and crude protein yield per unit area. Maize thousand grain weight, grain yield per plant and per area was affected by the intercrop arrangements. The use of two corn rows + two soybean rows (2M+2S-30 cm) and four corn rows + four soybean rows (4M+4S-30 cm) showed higher crude protein yield per area associated with similar maize grain yield in relation to the sole maize crop. In conclusion, alternating four maize rows with four soybean rows was the optimum row ratio in maize + soybean intercrop, though this needs to be further confirmed by more trials.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Alhassan Bawa

Background and Objective. Maize is one of the oldest cultivated crops. It is the third most important cereal after wheat and rice globally. Compared to all other cereals, maize has the highest average yield per unit area. The objective of the research was to evaluate maize varietal response to different nitrogen fertilizer rates. Materials and Methods. The treatment consisted of two factors, namely six varieties of maize and four levels of nitrogen application rates. These were arranged in 6 × 4 factorial combinations and laid out using randomized complete block design (RCBD) with three replications. The data collected were subjected to combined analysis for variation in factorial experiments in RCBD using Genstat statistical package edition 18. The means were separated using Duncan’s multiple range test at a 5% probability level. Results. The study revealed that varieties, such as IWD-C3-SYN-F2 and OBATAMPA, produced the highest grain yield and growth parameters (agronomic traits) relative to other varieties. The maximum grain yield and biomass production also occurred at the nitrogen application rates of 90 and 120 kg N/ha. Conclusion. Varieties, such as IWD-C3-SYN-F2 and OBATAMPA, and N rate of 90 kg N/ha are, therefore, recommended to be used for maize production by the resource-poor farmers in the Guinea Savanna Agro-Ecology of Ghana.


2014 ◽  
Vol 2 (2) ◽  
pp. 89-93 ◽  
Author(s):  
B Ita ◽  
E Ariga ◽  
R Michieka ◽  
W Muiru

Weed management practices used by small scale farmers determine maize productivity. The trials were executed in Kigumo district during the long and short rains in 2010 to compare effectiveness of glyphosate and hand weeding on weed management in maize (Zea mays L.). Treatments were arranged in a Completely Randomized Complete Block Design replicated three times in a split plot arrangement. The main plots were two maize varieties DUMA SC 41 and DK 8031 and the subplots three weed management practices,(glyphosate, hand weeding and no tillage). Data collected included weed count by species,fresh and dry weed biomass and maize grain yield. Data was subjected to ANOVA using Genstat computer software package at P<0.05. Treatments means were separated by Student-Newman Keuls Test. Results revealed that there were significant differences in weed count among weed management practices (P < 0.05). Weeds, significantly established faster under hand weeding than other weed management practices. There were no significant differences among weed management practices in biomass and maize grain yield (P < 0.05). The two maize varieties significantly differed in grain yield under different weed management practices, DK 8031 under glyphosate had the highest yield among the tillage practices involved.


2021 ◽  
Vol 4 (2) ◽  
pp. 48-62
Author(s):  
Kripa Adhikari ◽  
Sudip Bhandari ◽  
Krishna Aryal ◽  
Mohan Mahato ◽  
Jiban Shrestha

Nitrogen (N) fertilizer is considered as one of the most important factors affecting growth and grain yield of hybrid maize. This study was conducted to determine the effects of different rates of nitrogen and varieties on growth and yield of hybrid maize in Lamahi Municipality, Dang, Nepal from June to October, 2019. Three levels of hybrid maize varieties (10V10, Rajkumar F1 and NMH-731) and four levels of nitrogen (160, 180, 200 and 220 kg N ha-1) were evaluated using two factorial randomized complete block design with three replications. The results showed that grain yield and yield attributing traits of hybrid maize varieties increased with the increasing level of nitrogen from 160 to 220 kg ha-1. The application of nitrogen @ 220 kg N ha-1 produced the highest grain yield (10.07 t ha-1), cob length (16.33 cm), no of rows per cob (14.97), no of grains per row (33.37), cob diameter (4.54), thousand grain weight (276.77 g), stover yield (12.91 t ha-1), biological yield (23.00 t ha-1), harvest index (43.80), gross return (NRs. 208940 ha-1), net return (NRs.104488 ha-1) and B:C ratio (2.001). The hybrid maize variety 10V10 produced the highest grain yield (9.35 t ha-1), net returns (NRs. 91740.66 ha-1) and B:C ratio (1.91) accompanied by the highest cob length (16.25 cm), and as number of grains per row (32.35) as compared to other varieties. This study suggested that maize production can be maximized by cultivating hybrid maize variety 10V10 with the use of 220 kg N ha-1 in inner Terai region of Nepal.


Sign in / Sign up

Export Citation Format

Share Document