scholarly journals Comparison of Dislocation Density Tensor Fields Derived from Discrete Dislocation Dynamics and Crystal Plasticity Simulations of Torsion

2016 ◽  
Vol 5 (4) ◽  
pp. 44 ◽  
Author(s):  
Reese E Jones ◽  
Jonathan A Zimmerman ◽  
Giacomo Po

<p class="1Body">The importance of accurate simulation of the plastic deformation of ductile metals to the design of structures and components is well-known. Many techniques exist that address the length scales relevant to deformation processes, including dislocation dynamics (DD), which models the interaction and evolution of discrete dislocation line segments, and crystal plasticity (CP), which incorporates the crystalline nature and restricted motion of dislocations into a higher scale continuous field framework. While these two methods are conceptually related, there have been only nominal efforts focused on the system-level material response that use DD-generated information to enhance the fidelity of plasticity models. To ascertain to what degree the predictions of CP are consistent with those of DD, we compare their global and microstructural response in a number of deformation modes. After using nominally homogeneous compression and shear deformation dislocation dynamics simulations to calibrate crystal plasticity flow rule parameters, we compare not only the system-level stress-strain response of prismatic wires in torsion but also the resulting geometrically necessary dislocation density tensor fields. To establish a connection between explicit description of dislocations and the continuum assumed with crystal plasticity simulations, we ascertain the minimum length-scale at which meaningful dislocation density fields appear. Our results show that, for the case of torsion, the two material models can produce comparable spatial dislocation density distributions.</p>

2011 ◽  
Vol 1363 ◽  
Author(s):  
Mamdouh Mohamed ◽  
Anter El-Azab ◽  
B. C. Larson

ABSTRACTA computational technique is developed to predict the statistics of internal elastic fields of three-dimensional dislocation systems in deforming crystals. The internal elastic fields are computed based on 3D dislocation realizations generated by the method of dislocation dynamics simulation. Preliminary results are presented for the statistical characteristics of the elastic strain, lattice rotation and dislocation density tensor fields. The importance of the current analysis is discussed in the context of direct comparison of simulations with spatially resolved 3D X-ray microscopy measurements of lattice rotation and the dislocation density tensor.


2008 ◽  
Vol 1130 ◽  
Author(s):  
Jie Deng ◽  
Anter El-Azab ◽  
B.C. Larson

ABSTRACTThe statistics of internal elastic fields and dislocation density tensor associated with arbitrary 3D dislocation distributions have been modeled using probability density function and pair correlations. Numerical results for these quantities have been obtained for dislocation structures generated by the method of dislocation dynamics simulation.


2008 ◽  
Vol 41 (3) ◽  
pp. 035408 ◽  
Author(s):  
J Kioseoglou ◽  
G P Dimitrakopulos ◽  
Ph Komninou ◽  
Th Karakostas ◽  
E C Aifantis

The classical theory of continuous distributions of dislocations has traditionally focused on the Burgers’ vectors and the dislocation density tensor as descriptions of defectiveness. We prove that, generally, there is an infinite number of tensor densities with similarly descriptive properties, and that there is a functional basis for this list which strictly includes the Burgers’ vectors and dislocation density. Moreover the changes of state which preserve these densities turn out to represent slip in certain surfaces associated with crystal geometry, so that the basic mechanism of plasticity emerges naturally from abstract ideas which neither anticipate nor involve the kinematics of particular types of crystal defects.


2018 ◽  
Vol 913 ◽  
pp. 627-635
Author(s):  
Ming Yi Zhang ◽  
Min Zhong ◽  
Shuai Yuan ◽  
Jing Song Bai ◽  
Ping Li

In this paper, three dimensional discrete dislocation dynamics method was used to quantitatively investigate the influence of initial defects on mechanical response of single crystal copper. Both the irradiation defects (interstitial loops) and random dislocation lines with different densities are considered. The simulation results demonstrate that the yield strength of single crystal copper is higher with higher initial dislocation density and higher interstitial loop density. Dislocation density increases quickly by nucleation and multiplication and microbands are formed during plastic deformation when only the random dislocation lines are initially considered. Characteristics of microbands show excellent agreement with experiment results. Dislocation multiplication is suppressed in the presence of interstitial loops, and junctions and locks between dislocations and interstitial loops are formed. Dislocation density evolution shows fluctuation accompanied with strain-stress curve fluctuation.


2015 ◽  
Vol 1 (1) ◽  
Author(s):  
Sagar Chandra ◽  
M. K. Samal ◽  
V. M. Chavan ◽  
R. J. Patel

AbstractA hierarchical multiscale modeling approach is presented to predict the mechanical response of dynamically deformed (1100 s−1−4500 s−1) copper single crystal in two different crystallographic orientations.Anattempt has been made to bridge the gap between nano-, micro- and meso- scales. In view of this, Molecular Dynamics (MD) simulations at nanoscale are performed to quantify the drag coefficient for dislocations which has been exploited in Dislocation Dynamics (DD) regime at the microscale. Discrete dislocation dynamics simulations are then performed to calculate the hardening parameters required by the physics based Crystal Plasticity (CP) model at the mesoscale. The crystal plasticity model employed is based on thermally activated theory for plastic flow. Crystal plasticity simulations are performed to quantify the mechanical response of the copper single crystal in terms of stressstrain curves and shape changes under dynamic loading. The deformation response obtained from CP simulations is in good agreement with the experimental data.


2012 ◽  
Vol 715-716 ◽  
pp. 732-736 ◽  
Author(s):  
John Wheeler ◽  
Elisabetta Mariani ◽  
Sandra Piazolo ◽  
David J. Prior ◽  
P.J. Trimby ◽  
...  

The Weighted Burgers Vector (WBV) is defined as the sum, over all types of dislocations, of [(density of intersections of dislocation lines with a map) x (Burgers vector)]. It can be calculated, for any crystal system, solely from orientation gradients in a map view, unlike the full dislocation density tensor, which requires gradients in the third dimension. No assumption is made about gradients in the third dimension and they may be non-zero. The only assumption involved is that elastic strains are small so the lattice distortion is entirely due to dislocations. Orientation gradients can be estimated from gridded orientation measurements obtained by EBSD mapping, so the WBV can be calculated as a vector field on an EBSD map. The magnitude of the WBV gives a lower bound on the magnitude of the dislocation density tensor when that magnitude is defined in a coordinate invariant way. The direction of the WBV can constrain the types of Burgers vectors of geometrically necessary dislocations present in the microstructure, most clearly when it is broken down in terms of lattice vectors. The WBV has five advantages over other measures of local lattice distortion. 1. It is a vector and hence carries more information than any scalar measure of local misorientation. 2. It has an explicit mathematical link to the individual Burgers vectors of dislocations. 3. Since it is derived via tensor calculus, it is not dependent on the map coordinate system, in contrast to existing measures of local misorientation which are not only scalar but dependent on the coordinate system used. 4. Calculation involves no assumptions about energy minimisation. 5. The numerical differentiation involved in calculating the WBV may introduce errors, but there is a direct mathematical link to a contour integral. The net Burgers vector content of dislocations intersecting an area of a map can be simply calculated by an integration round the edge of that area, a method which is fast and complements point-by-point WBV calculations. Errors in orientation measurement will have a much smaller effect here, and dislocations can be detected which are otherwise lost in the noise of any local calculation.


Sign in / Sign up

Export Citation Format

Share Document