lattice rotation
Recently Published Documents


TOTAL DOCUMENTS

173
(FIVE YEARS 41)

H-INDEX

21
(FIVE YEARS 2)

2022 ◽  
pp. 117627
Author(s):  
Jonathan M. Hestroffer ◽  
Marat I. Latypov ◽  
Jean-Charles Stinville ◽  
Marie-Agathe Charpagne ◽  
Valery Valle ◽  
...  

2021 ◽  
Vol 49 ◽  
pp. 101468
Author(s):  
Marat I. Latypov ◽  
Jonathan M. Hestroffer ◽  
Jean-Charles Stinville ◽  
Jason R. Mayeur ◽  
Tresa M. Pollock ◽  
...  

2021 ◽  
Vol 7 (3) ◽  
pp. 117
Author(s):  
Murat Demiral ◽  
Anish Roy ◽  
Vadim V. Silberschmidt

In latest years small scale machining has been widely used in advanced engineering applications such as medical and optical devices, micro- and nano-electro-mechanical systems. In micromachining of metals, a depth of cut becomes usually smaller than an average crystal size of a polycrystalline structure; thus, the cutting process zone can be localized fully indoors of a single grain. Due to the crystallographic anisotropy, development of small scale machining models accounting for crystal plasticity are essential for a precise calculation of material removal under such circumstances. For this purpose, a 3D finite-element model of micro-cutting of a single grain was developed. A crystal-plasticity theory accounting for gradients of strain, implemented in ABAQUS/Explicit via a user-defined material subroutine VUMAT, was used in the computations. The deformation-induced lattice rotations in micro-cutting of a single crystal were analyzed extensively.


2021 ◽  
pp. 1-17
Author(s):  
Nicholas M. Rathmann ◽  
David A. Lilien

We investigate the errors caused by neglecting the crystal-orientation fabric when inferring the basal friction coefficient field, and whether such errors can be alleviated by inferring an isotropic enhancement factor field to compensate for missing fabric information. We calculate the steady states that arise from ice flowing over a sticky spot and a bedrock bump using a vertical-slab numerical ice-flow model, consisting of a Weertman sliding law and the anisotropic Johnson flow law, coupled to a spectral fabric model of lattice rotation and dynamic recrystallisation. Given the steady or transient states as input for a canonical adjoint-based inversion, we find that Glen's isotropic flow law cannot necessarily be used to infer the true basal drag or friction coefficient field, which are obscured by the orientation fabric, thus potentially affecting vertically integrated mass fluxes. By inverting for an equivalent isotropic enhancement factor, a more accurate mass flux can be recovered, suggesting that joint inversions for basal friction and the isotropic flow-rate factor may be able to compensate for mechanical anisotropies caused by the fabric. Thus, in addition to other sources of rheological uncertainty, fabric might complicate attempts to relate subglacial conditions to basal properties inferred from an inversion relying on Glen's law.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1189
Author(s):  
Yingjue Xiong ◽  
Qinmeng Luan ◽  
Kailun Zheng ◽  
Wei Wang ◽  
Jun Jiang

During plastic deformation, the change of structural states is known to be complicated and indeterminate, even in single crystals. This contributes to some enduring problems like the prediction of deformed texture and the commercial applications of such material. In this work, plane strain compression (PSC) tests were designed and implemented on single crystal pure aluminum to reveal the deformation mechanism. PSC tests were performed at different strain rates under strain control in either one-directional or two-directional compression. The deformed microstructures were analyzed according to the flow curve and the electron back-scattered diffraction (EBSD) mappings. The effects of grain orientation, strain rate, and strain path on the deformation and mechanical response were analyzed. Experimental results revealed that the degree of lattice rotation of one-dimensional compression mildly dependents on cube orientation, but it is profoundly sensitive to the strain rate. For two-dimensional compression, the softening behavior is found to be more pronounced in the case that provides greater dislocations gliding freeness in the first loading. Results presented in this work give new insights into aluminum deformation, which provides theoretical support for forming and manufacturing of aluminum.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nick R. Lutjes ◽  
Silang Zhou ◽  
Jordi Antoja-Lleonart ◽  
Beatriz Noheda ◽  
Václav Ocelík

AbstractTo obtain crystalline thin films of alpha-Quartz represents a challenge due to the tendency for the material towards spherulitic growth. Thus, understanding the mechanisms that give rise to spherulitic growth can help regulate the growth process. Here the spherulitic type of 2D crystal growth in thin amorphous Quartz films was analyzed by electron back-scatter diffraction (EBSD). EBSD was used to measure the size, orientation, and rotation of crystallographic grains in polycrystalline SiO2 and GeO2 thin films with high spatial resolution. Individual spherulitic Quartz crystal colonies contain primary and secondary single crystal fibers, which grow radially from the colony center towards its edge, and fill a near circular crystalline area completely. During their growth, individual fibers form so-called rotational crystals, when some lattice planes are continuously bent. The directions of the lattice rotation axes in the fibers were determined by an enhanced analysis of EBSD data. A possible mechanism, including the generation of the particular type of dislocation(s), is suggested.


2021 ◽  
Author(s):  
Elizabeth Fortin ◽  
Benjamin Shaffer ◽  
Tathagata Palodhi ◽  
Abhay Singh Gahloth ◽  
Lily Baye-Wallace ◽  
...  

Author(s):  
Biaobiao Yang ◽  
Chenying Shi ◽  
Xianjue Ye ◽  
Jianwei Teng ◽  
Ruilin Lai ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document