scholarly journals Numerical Simulation of Two-Phase Flows in Heterogeneous Porous Media

2020 ◽  
Vol 21 (2) ◽  
pp. 339
Author(s):  
I. Carneiro ◽  
M. Borges ◽  
S. Malta

In this work,we present three-dimensional numerical simulations of water-oil flow in porous media in order to analyze the influence of the heterogeneities in the porosity and permeability fields and, mainly, their relationships upon the phenomenon known in the literature as viscous fingering. For this, typical scenarios of heterogeneous reservoirs submitted to water injection (secondary recovery method) are considered. The results show that the porosity heterogeneities have a markable influence in the flow behavior when the permeability is closely related with porosity, for example, by the Kozeny-Carman (KC) relation.This kind of positive relation leads to a larger oil recovery, as the areas of high permeability(higher flow velocities) are associated with areas of high porosity (higher volume of pores), causing a delay in the breakthrough time. On the other hand, when both fields (porosity and permeability) are heterogeneous but independent of each other the influence of the porosity heterogeneities is smaller and may be negligible.

Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 12-17 ◽  
Author(s):  
Haojun Xie ◽  
Aifen Li ◽  
Zhaoqin Huang ◽  
Bo Gao ◽  
Ruigang Peng

AbstractCaves in fractured-vuggy reservoir usually contain lots of filling medium, so the two-phase flow in formations is the coupling of free flow and porous flow, and that usually leads to low oil recovery. Considering geological interpretation results, the physical filled cave models with different filling mediums are designed. Through physical experiment, the displacement mechanism between un-filled areas and the filling medium was studied. Based on the experiment model, we built a mathematical model of laminar two-phase coupling flow considering wettability of the porous media. The free fluid region was modeled using the Navier-Stokes and Cahn-Hilliard equations, and the two-phase flow in porous media used Darcy's theory. Extended BJS conditions were also applied at the coupling interface. The numerical simulation matched the experiment very well, so this numerical model can be used for two-phase flow in fracture-vuggy reservoir. In the simulations, fluid flow between inlet and outlet is free flow, so the pressure difference was relatively low compared with capillary pressure. In the process of water injection, the capillary resistance on the surface of oil-wet filling medium may hinder the oil-water gravity differentiation, leading to no fluid exchange on coupling interface and remaining oil in the filling medium. But for the water-wet filling medium, capillary force on the surface will coordinate with gravity. So it will lead to water imbibition and fluid exchange on the interface, high oil recovery will finally be reached at last.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1225 ◽  
Author(s):  
Xiankang Xin ◽  
Gaoming Yu ◽  
Zhangxin Chen ◽  
Keliu Wu ◽  
Xiaohu Dong ◽  
...  

The flow of polymer solution and heavy oil in porous media is critical for polymer flooding in heavy oil reservoirs because it significantly determines the polymer enhanced oil recovery (EOR) and polymer flooding efficiency in heavy oil reservoirs. In this paper, physical experiments and numerical simulations were both applied to investigate the flow of partially hydrolyzed polyacrylamide (HPAM) solution and heavy oil, and their effects on polymer flooding in heavy oil reservoirs. First, physical experiments determined the rheology of the polymer solution and heavy oil and their flow in porous media. Then, a new mathematical model was proposed, and an in-house three-dimensional (3D) two-phase polymer flooding simulator was designed considering the non-Newtonian flow. The designed simulator was validated by comparing its results with those obtained from commercial software and typical polymer flooding experiments. The developed simulator was further applied to investigate the non-Newtonian flow in polymer flooding. The experimental results demonstrated that the flow behavior index of the polymer solution is 0.3655, showing a shear thinning; and heavy oil is a type of Bingham fluid that overcomes a threshold pressure gradient (TPG) to flow in porous media. Furthermore, the validation of the designed simulator was confirmed to possess high accuracy and reliability. According to its simulation results, the decreases of 1.66% and 2.49% in oil recovery are caused by the difference between 0.18 and 1 in the polymer solution flow behavior indexes of the pure polymer flooding (PPF) and typical polymer flooding (TPF), respectively. Moreover, for heavy oil, considering a TPG of 20 times greater than its original value, the oil recoveries of PPF and TPF are reduced by 0.01% and 5.77%, respectively. Furthermore, the combined effect of shear thinning and a threshold pressure gradient results in a greater decrease in oil recovery, with 1.74% and 8.35% for PPF and TPF, respectively. Thus, the non-Newtonian flow has a hugely adverse impact on the performance of polymer flooding in heavy oil reservoirs.


SPE Journal ◽  
2016 ◽  
Vol 21 (01) ◽  
pp. 144-151 ◽  
Author(s):  
Mehdi Ghommem ◽  
Eduardo Gildin ◽  
Mohammadreza Ghasemi

Summary In this paper, we apply mode decomposition and interpolatory projection methods to speed up simulations of two-phase flows in heterogeneous porous media. We propose intrusive and nonintrusive model-reduction approaches that enable a significant reduction in the size of the subsurface flow problem while capturing the behavior of the fully resolved solutions. In one approach, we use the dynamic mode decomposition. This approach does not require any modification of the reservoir simulation code but rather post-processes a set of global snapshots to identify the dynamically relevant structures associated with the flow behavior. In the second approach, we project the governing equations of the velocity and the pressure fields on the subspace spanned by their proper-orthogonal-decomposition modes. Furthermore, we use the discrete empirical interpolation method to approximate the mobility-related term in the global-system assembly and then reduce the online computational cost and make it independent of the fine grid. To show the effectiveness and usefulness of the aforementioned approaches, we consider the SPE-10 benchmark permeability field, and present a numerical example in two-phase flow. One can efficiently use the proposed model-reduction methods in the context of uncertainty quantification and production optimization.


1999 ◽  
Author(s):  
Pavel Bedrikovetsky ◽  
Dan Marchesin ◽  
Paulo Roberto Ballin

Abstract Two-phase flow with hysteresis in porous media is described by the Buckley-Leverett model with three types of fractional flow functions: imbibition, drainage and scanning. The mathematical theory for the Riemann problem and for non-self-similar initial-boundary problem is developed. The structure of the solutions is presented and the physical interpretation of the phenomena is discussed. We obtain the analytical solution for the injection of water slug with gas drive into oil reservoirs. The solutions show that the effect of hysteresis is to decrease gas flux (in the case where the drainage relative permeability lies below the imbibition relative permeability). This effect increases oil recovery for Water-Alternate-Gas injection in oil reservoirs.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 533
Author(s):  
Qingsong Ma ◽  
Zhanpeng Zheng ◽  
Jiarui Fan ◽  
Jingdong Jia ◽  
Jingjing Bi ◽  
...  

Miscible and near-miscible flooding are used to improve the performance of carbon-dioxide-enhanced oil recovery in heterogeneous porous media. However, knowledge of the effects of heterogeneous pore structure on CO2/oil flow behavior under these two flooding conditions is insufficient. In this study, we construct pore-scale CO2/oil flooding models for various flooding methods and comparatively analyze CO2/oil flow behavior and oil recovery efficiency in heterogeneous porous media. The simulation results indicate that compared to immiscible flooding, near-miscible flooding can increase the CO2 sweep area to some extent, but it is still inefficient to displace oil in small pore throats. For miscible flooding, although CO2 still preferentially displaces oil through big throats, it may subsequently invade small pore throats. In order to substantially increase oil recovery efficiency, miscible flooding is the priority choice; however, the increase of CO2 diffusivity has little effect on oil recovery enhancement. For immiscible and near-miscible flooding, CO2 injection velocity needs to be optimized. High CO2 injection velocity can speed up the oil recovery process while maintaining equivalent oil recovery efficiency for immiscible flooding, and low CO2 injection velocity may be beneficial to further enhancing oil recovery efficiency under near-miscible conditions.


2021 ◽  
Vol 11 (3) ◽  
pp. 1353-1362
Author(s):  
Seyed Mousa Sajadi ◽  
Saeid Jamshidi ◽  
Meisam Kamalipoor

AbstractNowadays, as the oil reservoirs reaching their half-life, using enhanced oil recovery methods is more necessary and more common. Simulations are the synthetic process of real systems. In this study, simulation of water and surfactant injection into a porous media containing oil (two-phase) was performed using the computational fluid dynamics method on the image of a real micro-model. Also, the selected anionic surfactant is sodium dodecyl sulfate, which is more effective in sand reservoirs. The effect of using surfactant depends on its concentration. This dependence on concentration in using injection compounds is referred to as critical micelle concentration (CMC). In this study, an injection concentration (inlet boundary) of 1000 ppm was considered as a concentration less than the CMC point (2365 ppm). This range of surfactant concentrations after 4.5 ms increased the porous media recovery factor by 2.21%. Surfactant injection results showed the wettability alteration and IFT finally increases the recovery factor in comparison with water injection. Also, in wide channels, saturation front, and narrow channels, the concentration front has a great effect on the main flowing.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
S. Borazjani ◽  
P. Bedrikovetsky ◽  
R. Farajzadeh

Analytical solutions for one-dimensional two-phase multicomponent flows in porous media describe processes of enhanced oil recovery, environmental flows of waste disposal, and contaminant propagation in subterranean reservoirs and water management in aquifers. We derive the exact solution for3×3hyperbolic system of conservation laws that corresponds to two-phase four-component flow in porous media where sorption of the third component depends on its own concentration in water and also on the fourth component concentration. Using the potential function as an independent variable instead of time allows splitting the initial system to2×2system for concentrations and one scalar hyperbolic equation for phase saturation, which allows for full integration of non-self-similar problem with wave interactions.


1970 ◽  
Vol 10 (01) ◽  
pp. 75-84 ◽  
Author(s):  
F.N. Schneider ◽  
W.W. Owens

Abstract Three-phase relative permeability characteristics applicable to various oil displacement processes in the reservoir such as combustion and alternate gas-water injection were determined on both outcrop and reservoir core samples. Steady-state and nonsteady-state tests were performed on a variety of sandstone and carbonate core samples having different wetting properties. Some of the tests were performed on preserved samples. Some of the three-phase tests were performed on samples that contained two flowing phases and a third nonflowing phase, either gas or oil. These were classed as three-phase flow tests because the third phase played an important role in the flow behavior which was determined. The three-phase relative permeability test results are directly compared with the results of two-phase gas-oil and water-oil test. Wetting-phase relative permeability was found to be primarily dependent on its own saturation, i.e., relative permeability to the wetting phase during three-phase flow was in agreement with and could be predicted from the tow-phase data. Nonwetting-phase relative permeability-saturation relationships were found to be more complex and to depend in some cases on the saturation history of both nonwetting phases and on the saturation ratio of the second nonwetting phase and the wetting phases. Trapping of a given nonwetting phase or mutual flow interference between the two nonwetting phases when both are flowing accounts for most of the low relative permeabilities observed for three-phase flow tests. However, in special cases nonwetting-phase relative permeabilities at a given saturation are higher than those given by two-phase flow data. Despite these complexities some types of three-phase flow behavior can be predicted from two-phase flow data. Through its effect on the spatial distribution of the phases, wettability is shown to be a controlling factor in determining three-phase relative permeability characteristics. however, despite the importance of wettability the present data shown that for both water-wet and oil-wet systems oil recovery can be improved by several different injection processes, but the additional oil recovery is accompanied by lower fluid mobility. Introduction The increasing emphasis on optimizing recovery and the rapid and extensive development and use of mathematical modes for predicting reservoir performance are together creating a widespread need for reliable basic data on rock flow behavior. The two-phase imbibition or drainage flow relationships common to conventional oil recovery processes (depletion, gas or water injection, gravity drainage) are not applicable to some of the newer secondary and tertiary recovery techniques. This is because the reservoir displacement process may differ from that easily simulated in laboratory relative permeability studies. in some situations, data are needed fro a three-phase system where almost any combination of two fluids or even all three fluids may be flowing. In other, however, only two flowing phases are present, but the saturation history of the system is unique. Leverett and Lewis were the first to collect experimental relative permeability data on a three-phase system. Corey et al. were similarly leaders in efforts to define three-phase flow relationships using empirical approaches. Space does not permit a critical review of these earlier works. For those interested, a recent article by Saraf and Fatt provides a brief discussion of the experimental techniques used by earlier investigators. Suffice it to say that both experimental and empirical approaches have been used, but the applicability of both has been limited because in only one case have three-phase relative permeability data been obtained on reservoir rock material. SPEJ P. 75ˆ


SPE Journal ◽  
2007 ◽  
Vol 12 (03) ◽  
pp. 355-366 ◽  
Author(s):  
Jorge E.P. Monteagudo ◽  
Abbas Firoozabadi

Summary The control-volume discrete-fracture (CVDF) model is extended to incorporate heterogeneity in rock and in rock-fluid properties. A novel algorithm is proposed to model strong water-wetting with zero capillary pressure in the fractures. The extended method is used to simulate:oil production in a layered faulted reservoir,laboratory displacement tests in a stack of matrix blocks with a large contrast in fracture and matrix capillary pressure functions, andwater injection in 2D and 3D fractured media with mixed-wettability state. Our results show that the algorithm is suitable for the simulation of water injection in heterogeneous porous media both in water-wet and mixed-wettability states. The novel approach with zero fracture capillary and nonzero matrix capillary pressure allows the proper prediction of sharp fronts in the fractures. Introduction This work is focused on the numerical treatment of two main physical aspects of multiphase flow in fractured porous media: heterogeneity in rock-fluid properties and reservoir wettability. In a previous work (Monteagudo and Firoozabadi 2004), a CVDF method was used to discretize the system of equations governing water injection in fractured media with strong-water-wettability state and homogeneous matrix and rock-fluid properties. The method was restricted to a finite contrast in matrix-fracture capillary pressure. In this work, we extend the CVDF model for simulation of water injection in fractured media comprised of heterogeneous rocks and wettability conditions from strong-water-wetting to mixed-wetting conditions. We also present a formulation for infinite contrast in capillary pressures of matrix and fractures (zero capillary pressure in the fracture and finite capillary pressure in the matrix). The control volume (CV) method, first proposed by Baliga and Patankar (1980), is a finite-volume formulation over dual cells (CVs) of a Delaunay mesh. It is locally conservative and suited for unstructured grids. It has been widely employed for the simulation of multiphase flow in porous media (Monteagudo and Firoozabadi 2004; Verma 1996; Helmig 1997; Helmig and Huber 1998; Bastian et al. 2000; Geiger et al. 2003) and the convergence of the method for two-phase immiscible flow in porous medium has already been proved (Michel 2003). Numerical treatment of heterogeneity in the framework of the CV method has been extensively studied in the past (Edwards 2002; Edwards and Rogers 1998; Prevost 2000; Aavatsmark et al. 1998a, b). Nevertheless, those works have focused on absolute permeability heterogeneity and anisotropy in single-phase flow. The main concern in those works is the use of full tensor permeability and the accurate generation of streamlines (required by the streamline numerical method). It is well known that the standard CV method produces inaccurate velocity fields around the interfaces of heterogeneous media as the contrast in permeability is increased (Durlofsky 1994). In the standard CV method, Delaunay triangles are locally homogeneous and the polygonal CV cell may be heterogeneous (see Fig. 1a). For accurate streamlines, several authors (Verma 1996; Edwards 2002; Edwards and Rogers 1998; Prevost 2000; Aavatsmark et al. 1998a) have proposed that the polygonal CV cell must be locally homogeneous, implying heterogeneous Delaunay triangles (see Fig. 1b). The latter configuration, however, generates additional problems in the simulation of multiphase flow in porous media. Basically, from mesh generation standpoint, it may not be possible to generate an unstructured mesh where the boundaries of the CV median-dual cell conform to heterogeneous interfaces in the domain. Conforming mesh is important for the discrete-fracture approach. Therefore, it would be necessary to first generate a standard CV cell mesh, and later a homogenization procedure would be required to obtain CV cells with constant permeability. The homogenization or upscaling of permeability is somehow possible, but the same is not true for rock-fluid properties; most challenging is capillary pressure with different endpoints. Therefore, the approach with the homogeneous CV cell may be suitable for single-phase simulation where rock-fluid interactions are not part of the problem. However, rock-fluid interactions have to be taken into account for simulation of multiphase flow in fractured porous medium. Frequently, capillary pressure is disregarded in two-phase flow simulations; however, capillary pressure is of importance for simulation of multiphase flow in fractured porous media (Monteagudo and Firoozabadi 2004; Karimi-Fard and Firoozabadi 2003). Predictions of flow pattern and oil recovery may be severely affected if capillary pressure effect is neglected.


Sign in / Sign up

Export Citation Format

Share Document