scholarly journals Revealing the Thermodynamic Background of the Memory Effect in Phase Separating Cathode Materials

2019 ◽  
Vol 65 (11-12) ◽  
pp. 690-700 ◽  
Author(s):  
Klemen Zelič ◽  
Igor Mele ◽  
Ivo Pačnik ◽  
Jože Moškon ◽  
Miran Gaberšček ◽  
...  

Phase separating Li-ion battery cell cathode materials feature a well-known phenomenon called the memory effect. It manifests itself as an abnormal change in working voltage being dependent on cell cycling history. It was only recently that plausible mechanistic reasoning of the memory effect in Li-ion batteries was proposed. However, the existing literature does still not consistently reveal a phenomenological background for the onset or absence of the memory effect. This paper provides strong experimental and theoretical evidence of the memory effect in phase separating Li-ion battery cathode materials. Specifically, the background leading to the onset or absence of the memory effect and the underlying causal chain of phenomena from the collective particle-by-particle intra-electrode phenomena to macroscopic voltage output of the battery are presented and discussed. The results, clearly reveal that no memory effect is observed and predicted for low cut off voltages, whereas the absence of the first rest in memory writing cycle does not result in the absence of the memory effect, as previously believed. In addition, excellent agreement between the simulated and measured results is shown which, on one hand confirms the credibility of the combined analyses and, on the other, provides clear causal relations from macroscopic experimental parameters to simulated phenomena on the particle level.

Author(s):  
Joey Chung-Yen Jung ◽  
Norman Chow ◽  
Anca Nacu ◽  
Mariam Melashvili ◽  
Alex Cao ◽  
...  

2019 ◽  
Vol 175 ◽  
pp. 107067 ◽  
Author(s):  
Ting-Feng Yi ◽  
Pan-Pan Peng ◽  
Zikui Fang ◽  
Yan-Rong Zhu ◽  
Ying Xie ◽  
...  

Author(s):  
Satadru Dey ◽  
Beshah Ayalew

This paper proposes and demonstrates an estimation scheme for Li-ion concentrations in both electrodes of a Li-ion battery cell. The well-known observability deficiencies in the two-electrode electrochemical models of Li-ion battery cells are first overcome by extending them with a thermal evolution model. Essentially, coupling of electrochemical–thermal dynamics emerging from the fact that the lithium concentrations contribute to the entropic heat generation is utilized to overcome the observability issue. Then, an estimation scheme comprised of a cascade of a sliding-mode observer and an unscented Kalman filter (UKF) is constructed that exploits the resulting structure of the coupled model. The approach gives new real-time estimation capabilities for two often-sought pieces of information about a battery cell: (1) estimation of cell-capacity and (2) tracking the capacity loss due to degradation mechanisms such as lithium plating. These capabilities are possible since the two-electrode model needs not be reduced further to a single-electrode model by adding Li conservation assumptions, which do not hold with long-term operation. Simulation studies are included for the validation of the proposed scheme. Effect of measurement noise and parametric uncertainties is also included in the simulation results to evaluate the performance of the proposed scheme.


2016 ◽  
Author(s):  
Hiroki Nagai ◽  
Masahiro Morita ◽  
Koichi Satoh

2019 ◽  
Vol 25 (36) ◽  
pp. 253-262 ◽  
Author(s):  
Andreas Nyman ◽  
Tommy G. Zavalis ◽  
Ragna Elger ◽  
Maårten Behm ◽  
Göran Lindbergh

2015 ◽  
Vol 17 (8) ◽  
pp. 5942-5953 ◽  
Author(s):  
Anubhav Jain ◽  
Geoffroy Hautier ◽  
Shyue Ping Ong ◽  
Stephen Dacek ◽  
Gerbrand Ceder

High voltage and high thermal safety are desirable characteristics of cathode materials, but difficult to achieve simultaneously DFT calculations on >1400 Li ion battery cathode materials indicate a complex inverse relationship between voltage and thermal safety.


Sign in / Sign up

Export Citation Format

Share Document