scholarly journals The role of LiDAR in sustainable forest management

2008 ◽  
Vol 84 (6) ◽  
pp. 807-826 ◽  
Author(s):  
Michael A Wulder ◽  
Christopher W Bater ◽  
Nicholas C Coops ◽  
Thomas Hilker ◽  
Joanne C White

Forest characterization with light detection and ranging (LiDAR) data has recently garnered much scientific and operational attention. The number of forest inventory attributes that may be directly measured with LiDAR is limited; however, when considered within the context of all the measured and derived attributes required to complete a forest inventory, LiDAR can be a valuable tool in the inventory process. In this paper, we present the status of LiDAR remote sensing of forests, including issues related to instrumentation, data collection, data processing, costs, and attribute estimation. The information needs of sustainable forest management provide the context within which we consider future opportunities for LiDAR and automated data processing. Key words: LiDAR, airborne laser altimetry, forest inventory, height, volume, biomass, update, remote sensing

2021 ◽  
Vol 13 (4) ◽  
pp. 572
Author(s):  
Gintautas Mozgeris ◽  
Ivan Balenović

The pre-requisite for sustainable management of natural resources is the availability of timely, cost-effective, and comprehensive information on the status and development trends of the management object [...]


2020 ◽  
Vol 81 (4) ◽  
pp. 175-194
Author(s):  
Grzegorz Krok ◽  
Bartłomiej Kraszewski ◽  
Krzysztof Stereńczak

Abstract Precise determination of forest resources is one of the most important tasks in conducting sustainable forest management. Accurate information about the forest’s resources allows for a better planning of current and future management as well as conservation activities. Such precise information is needed by both, individual forest managers and for developing the national forest policy. In recent years, interest in the use of remote sensing in forest inventory has significantly increased. Remote sensing allows for non-invasive measurements and the automation of data processing. The most accurate source of remote sensing data at the level of the sample plot is terrestrial laser scanning (TLS). Its use in forest inventory has been studied for about two decades. This paper aims to introduce studies on state of the art TLS technology as well as provide an overview of research conducted in stands within the temperate climate zone. This article furthermore discusses issues such as TLS data acquisition, data processing and presents results for the estimation of tree biometric features.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Matieu Henry ◽  
Zaheer Iqbal ◽  
Kristofer Johnson ◽  
Mariam Akhter ◽  
Liam Costello ◽  
...  

Abstract Background National forest inventory and forest monitoring systems are more important than ever considering continued global degradation of trees and forests. These systems are especially important in a country like Bangladesh, which is characterised by a large population density, climate change vulnerability and dependence on natural resources. With the aim of supporting the Government’s actions towards sustainable forest management through reliable information, the Bangladesh Forest Inventory (BFI) was designed and implemented through three components: biophysical inventory, socio-economic survey and remote sensing-based land cover mapping. This article documents the approach undertaken by the Forest Department under the Ministry of Environment, Forests and Climate Change to establish the BFI as a multipurpose, efficient, accurate and replicable national forest assessment. The design, operationalization and some key results of the process are presented. Methods The BFI takes advantage of the latest and most well-accepted technological and methodological approaches. Importantly, it was designed through a collaborative process which drew from the experience and knowledge of multiple national and international entities. Overall, 1781 field plots were visited, 6400 households were surveyed, and a national land cover map for the year 2015 was produced. Innovative technological enhancements include a semi-automated segmentation approach for developing the wall-to-wall land cover map, an object-based national land characterisation system, consistent estimates between sample-based and mapped land cover areas, use of mobile apps for tree species identification and data collection, and use of differential global positioning system for referencing plot centres. Results Seven criteria, and multiple associated indicators, were developed for monitoring progress towards sustainable forest management goals, informing management decisions, and national and international reporting needs. A wide range of biophysical and socioeconomic data were collected, and in some cases integrated, for estimating the indicators. Conclusions The BFI is a new information source tool for helping guide Bangladesh towards a sustainable future. Reliable information on the status of tree and forest resources, as well as land use, empowers evidence-based decision making across multiple stakeholders and at different levels for protecting natural resources. The integrated socio-economic data collected provides information about the interactions between people and their tree and forest resources, and the valuation of ecosystem services. The BFI is designed to be a permanent assessment of these resources, and future data collection will enable monitoring of trends against the current baseline. However, additional institutional support as well as continuation of collaboration among national partners is crucial for sustaining the BFI process in future.


2005 ◽  
Vol 81 (2) ◽  
pp. 214-221 ◽  
Author(s):  
M D Gillis ◽  
A Y Omule ◽  
T. Brierley

A new national forest inventory is being installed in Canada. For the last 20 years, Canada's forest inventory has been a compilation of inventory data from across the country. Although this method has a number of advantages, it lacks information about the nature and rate of changes to the resource, and does not permit projections or forecasts. To address these limitations a new National Forest Inventory (NFI) was developed to monitor Canada's progress in meeting a commitment towards sustainable forest management, and to satisfy requirements for national and international reporting. The purpose of the new inventory is to "assess and monitor the extent, state and sustainable development of Canada's forests in a timely and accurate manner." The NFI consists of a plot-based system of permanent observational units located on a national grid. A combination of ground plot, photo plot and remote sensing data are used to capture a set of basic attributes that are used to derive indicators of sustainability. To meet the monitoring needs a re-measurement strategy and framework to guide the development of change estimation procedures has been worked out. A plan for implementation has been drafted. The proposed plan is presented and discussed in this paper. Key words: Canada, forest cover, inventory, monitoring, National Forest Inventory, re-measurement, panel


Sign in / Sign up

Export Citation Format

Share Document