A New Semi-Analytical Solution of the Telegraph Equation with Integral Condition

2011 ◽  
Vol 66 (12) ◽  
pp. 760-768 ◽  
Author(s):  
S. Abbasbandy ◽  
H. Roohani Ghehsarehb

In the current work, the telegraph equation in its general form and with an integral condition is investigated. Also the well-known homotopy analysis method (HAM) is applied and an interesting iterative algorithm is proposed for solving the problem in general form. Some numerical examples are given and compared with the exact solution to show the effectiveness of the proposed method.

Author(s):  
Ali Kurt ◽  
Orkun Tasbozan ◽  
Yücel Cenesiz

The main goal of this paper is nding the approximate analytical solution of Burgers-Korteweg-de Vries with newly de ned conformable derivative by using homotopy analysis method (HAM). Then the approximate analytical solution is compared with the exact solution and comparative tables are given.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Behzad Ghanbari

We aim to study the convergence of the homotopy analysis method (HAM in short) for solving special nonlinear Volterra-Fredholm integrodifferential equations. The sufficient condition for the convergence of the method is briefly addressed. Some illustrative examples are also presented to demonstrate the validity and applicability of the technique. Comparison of the obtained results HAM with exact solution shows that the method is reliable and capable of providing analytic treatment for solving such equations.


Author(s):  
Dr. K.V.Tamil Selvi , Et. al.

In this paper, analysis of nonlinear partial differential equations on velocities and temperature with convective boundary conditions are investigated. The governing partial differential equations are transformed into ordinary differential equations by applying similarity transformations. The system of nonlinear differential equations are solved using Homotopy Analysis Method (HAM). An analytical solution is obtained for the values of Magnetic parameter M2, Prandtl number Pr, Porosity parameter


Author(s):  
Khalid Suliman Aboodh ◽  
Abu baker Ahmed

In this paper, an attempt has been made to obtain the solution of linear and nonlinear fractional differential equations by applying an analytic technique, namely the homotopy analysis method (HAM). The fractional derivatives are described by Caputo’s sense. By this method, the solution considered as the sum of an infinite series, which converges rapidly to exact solution with the help of the nonzero convergence control parameter ℏ. Some examples are given to show the efficiently and accurate of this method. The solutions obtained by this method has been compared with exact solution. Also our graphical represented of the solutions have been given by using MATLAB software.


Open Physics ◽  
2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Ali Kurt ◽  
Yücel Çenesiz ◽  
Orkun Tasbozan

AbstractFirstly in this article, the exact solution of a time fractional Burgers’ equation, where the derivative is conformable fractional derivative, with dirichlet and initial conditions is found byHopf-Cole transform. Thereafter the approximate analytical solution of the time conformable fractional Burger’s equation is determined by using a Homotopy Analysis Method(HAM). This solution involves an auxiliary parameter ~ which we also determine. The numerical solution of Burgers’ equation with the analytical solution obtained by using the Hopf-Cole transform is compared.


Sign in / Sign up

Export Citation Format

Share Document