Heat Transfer in a Couple Stress Fluid over a Continuous Moving Surface with Internal Heat Generation and Convective Boundary Conditions

2012 ◽  
Vol 67 (5) ◽  
pp. 217-224 ◽  
Author(s):  
Tasawar Hayat ◽  
Zahid Iqbal ◽  
Muhammad Qasim ◽  
Omar M. Aldossary

This investigation reports the boundary layer flow and heat transfer characteristics in a couple stress fluid flow over a continuos moving surface with a parallel free stream. The effects of heat generation in the presence of convective boundary conditions are also investigated. Series solutions for the velocity and temperature distributions are obtained by the homotopy analysis method (HAM). Convergence of obtained series solutions are analyzed. The results are obtained and discussed through graphs for physical parameters of interest.


2016 ◽  
Vol 138 (9) ◽  
Author(s):  
Saima Noreen

Peristaltic motion of couple-stress fluid with Joule heating through asymmetric channel under the effect of magnetic field is investigated. Robin-type (convective) boundary conditions are employed. The basic equations of couple-stress fluid are modeled in wave frame of reference by utilizing long wavelength and low Reynolds number approximation. Numerical solution of the resulting problem is analyzed. The effects of various parameters of interest on the velocity, pressure rise, and temperature are discussed and illustrated graphically.



2019 ◽  
Vol 23 (6 Part B) ◽  
pp. 3785-3796
Author(s):  
Mohamed Abdel-Wahed ◽  
Essam El-Said

In this paper, the effect of convective boundary conditions, heat generation, Brownian motion, and thermophoresis on heat transfer characteristics of a moving cylinder embedded into cooling medium consists of water with nanoparticles are studied. The governing boundary-layer equations transformed to ODE using similarity transformation method and then solved analytically using optimal homotopy asymptotic method for the general case. The velocity, temperature, and concentration profiles within the boundary-layer plotted and discussed in details for various values of the different parameters. Moreover, the effect of boundary-layer behavior on the surface shear stress, rate of heat and mass transfer investigated.



Author(s):  
G. Manjunatha ◽  
C. Rajashekhar ◽  
K. V. Prasad ◽  
Hanumesh Vaidya ◽  
Saraswati

The present article addresses the peristaltic flow of a Jeffery fluid over an inclined axisymmetric porous tube with varying viscosity and thermal conductivity. Velocity slip and convective boundary conditions are considered. Resulting governing equations are solved using long wavelength and small Reynolds number approximations. The closed-form solutions are obtained for velocity, streamline, pressure gradient, temperature, pressure rise, and frictional force. The MATLAB numerical simulations are utilized to compute pressure rise and frictional force. The impacts of various physical parameters in the interims for time-averaged flow rate with pressure rise and is examined. The consequences of sinusoidal, multi-sinusoidal, triangular, trapezoidal, and square waveforms on physiological parameters are analyzed and discussed through graphs. The analysis reveals that the presence of variable viscosity helps in controlling the pumping performance of the fluid.



Author(s):  
Tirivanhu Chinyoka ◽  
Daniel Oluwole Makinde

Purpose – The purpose of this paper is to examine the unsteady pressure-driven flow of a reactive third-grade non-Newtonian fluid in a channel filled with a porous medium. The flow is subjected to buoyancy, suction/injection asymmetrical and convective boundary conditions. Design/methodology/approach – The authors assume that exothermic chemical reactions take place within the flow system and that the asymmetric convective heat exchange with the ambient at the surfaces follow Newton’s law of cooling. The authors also assume unidirectional suction injection flow of uniform strength across the channel. The flow system is modeled via coupled non-linear partial differential equations derived from conservation laws of physics. The flow velocity and temperature are obtained by solving the governing equations numerically using semi-implicit finite difference methods. Findings – The authors present the results graphically and draw qualitative and quantitative observations and conclusions with respect to various parameters embedded in the problem. In particular the authors make observations regarding the effects of bouyancy, convective boundary conditions, suction/injection, non-Newtonian character and reaction strength on the flow velocity, temperature, wall shear stress and wall heat transfer. Originality/value – The combined fluid dynamical, porous media and heat transfer effects investigated in this paper have to the authors’ knowledge not been studied. Such fluid dynamical problems find important application in petroleum recovery.





Sign in / Sign up

Export Citation Format

Share Document