Peristaltic flow of a Jeffery fluid over a porous conduit in the presence of variable liquid properties and convective boundary conditions

Author(s):  
G. Manjunatha ◽  
C. Rajashekhar ◽  
K. V. Prasad ◽  
Hanumesh Vaidya ◽  
Saraswati

The present article addresses the peristaltic flow of a Jeffery fluid over an inclined axisymmetric porous tube with varying viscosity and thermal conductivity. Velocity slip and convective boundary conditions are considered. Resulting governing equations are solved using long wavelength and small Reynolds number approximations. The closed-form solutions are obtained for velocity, streamline, pressure gradient, temperature, pressure rise, and frictional force. The MATLAB numerical simulations are utilized to compute pressure rise and frictional force. The impacts of various physical parameters in the interims for time-averaged flow rate with pressure rise and is examined. The consequences of sinusoidal, multi-sinusoidal, triangular, trapezoidal, and square waveforms on physiological parameters are analyzed and discussed through graphs. The analysis reveals that the presence of variable viscosity helps in controlling the pumping performance of the fluid.

2019 ◽  
Vol 393 ◽  
pp. 16-30 ◽  
Author(s):  
Gudekote Manjunatha ◽  
Hanumesh Vaidya ◽  
Choudhari Rajashekhar ◽  
K.V. Prasad

The present paper investigates the role of heat transfer on peristaltic transport of Jeffery liquid in a porous tube. The effect of variable viscosity and slip impacts are taken into account. The closed-form solutions are obtained with the help of long wavelength and small Reynolds number. The results of physiological parameters on velocity, pressure rise, frictional force, trapped bolus, and temperature are plotted graphically. It is seen that the pressure rise and the frictional forces decline with an expansion in the viscosity parameter. The study further demonstrates that an increase in the value of the slip parameter significantly alters the pressure rise, frictional force, and temperature. Moreover, the volume of trapped bolus increases with an increase in the value of the velocity slip parameter.


2013 ◽  
Vol 29 (4) ◽  
pp. 599-607 ◽  
Author(s):  
T. Hayat ◽  
Humaira Yasmin ◽  
Mohammed S. Alhuthali ◽  
Marwan A. Kutbi

ABSTRACTThis article addresses peristaltic flow of third order fluid in an asymmetric channel. Channel walls are subjected to the convective boundary conditions. The channel asymmetry is produced by choosing the peristaltic wave train on the walls to have different amplitudes and phase. Long wavelength approximation and perturbation method give the series solutions for the stream function, temperature and longitudinal pressure gradient. Analysis has been further carried out for pressure rise per wavelength through numerical integration. Several graphs of physical interest are displayed and discussed.


2018 ◽  
Vol 7 (2) ◽  
pp. 83-90 ◽  
Author(s):  
Saima Noreen

Abstract This research is devoted to the peristaltic flow of Eyring-Powell nanofluid in an asymmetric channel. Robins-type (convective) boundary conditions are employed in the presence of mixed convection and magnetic field. The basic equations of Eyring-Powell nanofluid are modeled in wave frame of reference. Long wavelength and low Reynolds number approach is utilized. Numerical solution of the governing problem is computed and analyzed. The effects of various parameters of interest on the velocity, pressure rise, concentration and temperature are discussed and illustrated graphically. Brownian motion parameter and thermophoresis parameter facilitates the increase in temperature of fluid. Biot numbers serve to reduce the temperature at channel walls.


2012 ◽  
Vol 67 (5) ◽  
pp. 217-224 ◽  
Author(s):  
Tasawar Hayat ◽  
Zahid Iqbal ◽  
Muhammad Qasim ◽  
Omar M. Aldossary

This investigation reports the boundary layer flow and heat transfer characteristics in a couple stress fluid flow over a continuos moving surface with a parallel free stream. The effects of heat generation in the presence of convective boundary conditions are also investigated. Series solutions for the velocity and temperature distributions are obtained by the homotopy analysis method (HAM). Convergence of obtained series solutions are analyzed. The results are obtained and discussed through graphs for physical parameters of interest.


2014 ◽  
Vol 69 (8-9) ◽  
pp. 425-432 ◽  
Author(s):  
Tasawar Hayat ◽  
Humaira Yasmin ◽  
Bashir Ahmad ◽  
Guo-Qian Chen

This paper investigates the peristaltic transport of an incompressible micropolar fluid in an asymmetric channel with heat source/sink and convective boundary conditions. Mathematical formulation is completed in a wave frame of reference. Long wavelength and low Reynolds number approach is adopted. The solutions for velocity, microrotation component, axial pressure gradient, temperature, stream function, and pressure rise over a wavelength are obtained. Velocity and temperature distributions are analyzed for different parameters of interest


Sign in / Sign up

Export Citation Format

Share Document