The Gallium Intermetallics REPdGa3 (RE=La, Ce, Pr, Nd, Sm, Eu) with SrPdGa3-type Structure

2014 ◽  
Vol 69 (11-12) ◽  
pp. 1105-1118 ◽  
Author(s):  
Stefan Seidel ◽  
Oliver Niehaus ◽  
Samir F. Matar ◽  
Oliver Janka ◽  
Birgit Gerke ◽  
...  

Abstract The gallium-rich intermetallic phases REPdGa3 (RE=La, Ce, Pr, Nd, Sm, Eu) were obtained by arc-melting of the elements and subsequent annealing for crystal growth. The samples were studied by X-ray diffraction on powders and single crystals. The structures of three crystals were refined from X-ray diffractometer data: SrPdGa3 type, Cmcm, a=634.3(1), b=1027.2(1), c=593.5(1) pm, wR=0.0621, 380 F2 values, 20 variables for CePd0:80(4)Ga3:20(4), a=635.9(1), b=1027.5(1), c=592.0(1) pm, wR=0.1035, 457 F2 values, 19 variables for CePdGa3, and a=640.7(1), b=1038.2(1), c=593.7(1) pm, wR=0.0854, 489 F2 values, 19 variables for EuPdGa3. The REPdGa3 gallides are orthorhombic superstructure variants of the aristotype ThCr2Si2. The palladium and gallium atoms build up polyanionic [PdGa3]δ- networks with Pd-Ga and Ga-Ga distances of 248 - 254 and 266 - 297 pm, respectively, in EuPdGa3. The rare earth atoms fill cavities within the polyanionic networks. They are coordinated by five palladium and twelve gallium atoms. Taking CePdGa3 as an illustrative representative, the band structure calculations show largely dispersive itinerant s, p bands and little dispersive d (Pd) and f (Ce) bands, the latter crossing the Fermi level at large magnitude leading to magnetic instability in a spin-degenerate state and a subsequent antiferromagnetic ground state with a small moment of ±0.36 μB on Ce. The bonding characteristics indicate a prevailing Ce-Ga bonding versus Pd-Ga and Ce-Pd. Temperature-dependent magnetic susceptibility and 151Eu Mössbauer spectroscopic measurements point to stable trivalent lanthanum, cerium, praseodymium, and neodymium, but divalent europium. SmPdGa3 shows intermediate valence. Antiferromagnetic ordering occurs at TN =5.1(5), 7.0(5), 6.3(5), 11.9(5), and 23.0(5) for RE=Ce, Pr, Nd, Sm, and Eu, respectively.

2013 ◽  
Vol 68 (9) ◽  
pp. 971-978 ◽  
Author(s):  
Inga Schellenberg ◽  
Ute Ch. Rodewald ◽  
Christian Schwickert ◽  
Matthias Eul ◽  
Rainer Pöttgen

The ternary antimonides RE4T7Sb6 (RE=Gd-Lu; T =Ru, Rh) have been synthesized from the elements by arc-melting and subsequent annealing in an induction furnace. The samples have been characterized by powder X-ray diffraction. Four structures were refined on the basis of single-crystal X-ray diffractometer data: U4Re7Si6 type, space group Im3m with a=862.9(2) pm, wR2=0.0296, 163 F2 values for Er4Ru7Sb6; a=864.1(1) pm, wR2=0.1423, 153 F2 values for Yb4Ru7Sb6; a=872.0(2) pm, wR2=0.0427, 172 F2 values for Tb4Rh7Sb6; and a=868.0(2) pm, wR2=0.0529, 154 F2 values for Er4Rh7Sb6, with 10 variables per refinement. The structures have T1@Sb6 octahedra and slightly distorted RE@T26Sb6 cuboctahedra as building units. The distorted cuboctahedra are condensed via all trapezoidal faces, and this network leaves octahedral voids for the T1 atoms. The ruthenium-based series of compounds was studied by temperature-dependent magnetic susceptibility measurements. Lu4Ru7Sb6 is Pauli-paramagnetic. The antimonides RE4Ru7Sb6 with RE=Dy, Ho, Er, and Tm show Curie-Weiss paramagnetism. Antiferromagnetic ordering occurs at 10.0(5), 5.1(5) and 4.0(5) K for Dy4Ru7Sb6, Ho4Ru7Sb6 and Er4Ru7Sb6, respectively, while Tm4Ru7Sb6 remains paramagnetic. Yb4Ru7Sb6 is an intermediate-valent compound with a reduced magnetic moment of 3.71(1) μB per Yb as compared to 4.54 μB for a free Yb3+ ion


2017 ◽  
Vol 72 (11) ◽  
pp. 855-864 ◽  
Author(s):  
Fabian Eustermann ◽  
Matthias Eilers-Rethwisch ◽  
Konstantin Renner ◽  
Rolf-Dieter Hoffmann ◽  
Rainer Pöttgen ◽  
...  

AbstractThe germanides RE3Pt4Ge6 (RE=Y, Pr, Nd, Sm, Gd–Dy) have been synthesized by arc-melting of the elements followed by inductive annealing to improve the crystallinity and allow for structural order. The compounds have been studied by powder X-ray diffraction; additionally the structure of Y3Pt4Ge6 has been refined from single-crystal X-ray diffractometer data. It exhibits a (3+1)D modulated structure, indicating isotypism with Ce3Pt4Ge6. The crystal structure can be described as an intergrowth between YIrGe2- and CaBe2Ge2-type slabs along [100]. Temperature-dependent magnetic susceptibility measurements showed Pauli paramagnetism for Y3Pt4Ge6 and Curie-Weiss paramagnetism for Pr3Pt4Ge6 and Nd3Pt4Ge6. Sm3Pt4Ge6 exhibits van Vleck paramagnetism, while antiferromagnetic ordering at TN=8.1(1) K and TN=11.0(1) K is observed for Gd3Pt4Ge6 and Tb3Pt4Ge6, respectively.


Author(s):  
Steffen Klenner ◽  
Maximilian Kai Reimann ◽  
Rainer Pöttgen

Abstract The magnesium- and cadmium-rich intermetallic phases EuTMg2 (T = Rh, Pd, Ag, Ir, Pt, Au), EuTCd2 (T = Pd, Pt, Au) and CaRhMg2 were synthesized from the elements in sealed niobium or tantalum ampoules and with heat treatments in muffle or induction furnaces. The samples were characterized by powder X-ray diffraction and the structures were refined from single crystal X-ray diffractometer data. EuTMg2 (T = Pd, Ag, Pt, Au) and EuTCd2 (T = Pd, Pt, Au) crystallize with the MgCuAl2 type, space group Cmcm, while EuRhMg2, EuIrMg2 and CaRhMg2 adopt the YSiPd2 type, space group Pnma. The striking crystal chemical motif of both series of compounds are networks of puckered Mg(Cd) hexagons in ABAB stacking sequence that derive from the aristotype AlB2; however, with different tiling. Temperature dependent magnetic susceptibility and 151Eu Mössbauer spectroscopic measurements indicate stable divalent europium. Antiferromagnetic ordering sets in at 20.2 (EuIrMg2), 22.3 (EuPdMg2), 21.3 (EuAgMg2), 10.9 (EuPdCd2) and 15.5 K (EuPtCd2), respectively. The stable antiferromagnetic ground states are substantiated by metamagnetic transitions. The 151Eu isomer shifts show a linear correlation with the valence electron count for the whole series of EuTMg2, EuTCd2, EuTIn2 and EuTSn2 phases.


2014 ◽  
Vol 69 (7) ◽  
pp. 775-785 ◽  
Author(s):  
Christian Schwickert ◽  
Florian Winter ◽  
Rainer Pöttgen

The europium stannides EuT2Sn2 (T = Pd, Pt, Au) and Eu3Ag5.4Sn5.6 were synthesized by highfrequency melting of the elements in sealed niobium ampoules in a water-cooled sample chamber. All samples were characterized by powder X-ray diffraction. The EuT2Sn2 (T = Pd, Pt, Au) stannides crystallize with the CaBe2Ge2-type structure, space group P4/nmm. The structure of EuPd2Sn2 was refined from single-crystal X-ray diffractometer data: a = 462.44(8), c = 1045.8(3) pm, wR = 0.0402, 237 F2 values and 15 refined variables. The palladium and tin atoms build up a threedimensional [Pd2Sn2] polyanionic network, exclusively with Pd-Sn interactions (261 - 269 pm). The Pd1 and Pd2 atoms have square-pyramidal and tetrahedral tin coordination, respectively. The europium atoms fill large voids within the network. They are coordinated to eight palladium and eight tin atoms. Temperature-dependent magnetic susceptibility studies confirm a stable divalent ground state of the europium atoms. The compounds become ordered antiferromagnetically below 6.3 (EuPd2Sn2), 6.1 (EuPt2Sn2) and 7.7 K (EuAu2Sn2). Eu3Ag5.4Sn5.6 adopts a partially ordered variant of the La3Al11 type, space group Immm, a = 471.33(8), b = 1382.5(4), c = 1032.4(2) pm, wR = 0.0449, 692 F2 values, 30 variables. The three-dimensional [Ag5.4Sn5.6] network shows one silver and one tin site besides two sites with substantial Ag/Sn mixing. The two crystallographically independent europium atoms fill larger and smaller cavities within the [Ag5.4Sn5.6] network. Eu3Ag5.4Sn5.6 also shows divalent europium and antiferromagnetic ordering at TN = 6:9 K. A 151Eu Mössbauer spectrum of Eu3Ag5.4Sn5.6 at 5.2 K shows an isomer shift of δ = −10.61 mms−1, typical for Eu(II) compounds, and a magnetic hyperfine field splitting of BHf = 5.9 T. 119Sn Mössbauer spectra of the four stannides show isomer shifts in the range of δ = 1.78 - 2.20 mms−1, usually observed for tin in intermetallic compounds.


2017 ◽  
Vol 72 (8) ◽  
pp. 609-615
Author(s):  
Lukas Heletta ◽  
Stefan Seidel ◽  
Christopher Benndorf ◽  
Hellmut Eckert ◽  
Rainer Pöttgen

AbstractThe gallium-containing Heusler phases ScRh2Ga, ScPd2Ga, TmRh2Ga and LuRh2Ga have been synthesized by arc-melting of the elements followed by different annealing sequences to improve phase purity. The samples have been studied by powder X-ray diffraction. The structures of Lu0.97Rh2Ga1.03 (Fm3̅m, a=632.94(5) pm, wR2=0.0590, 46 F2 values, seven variables) and Sc0.88Rh2Ga1.12 (a=618.91(4) pm, wR2=0.0284, 44 F2 values, six variables) have been refined from single crystal X-ray diffractometer data. Both gallides show structural disorder through Lu/Ga and Sc/Ga mixing. Temperature dependent magnetic susceptibility measurements showed Pauli paramagnetism for ScRh2Ga, ScPd2Ga, and LuRh2Ga and Curie-Weiss paramagnetism for TmRh2Ga. 45Sc and 71Ga solid state MAS NMR spectroscopic investigations of the Sc containing compounds confirmed the site mixing effects typically observed for Heusler phases. The data indicate that the effect of mixed Sc/Ga occupancy is significantly stronger in ScRh2Ga than in ScPd2Ga.


2013 ◽  
Vol 68 (5-6) ◽  
pp. 625-634 ◽  
Author(s):  
Bastian Reker ◽  
Samir F. Matar ◽  
Ute Ch. Rodewald ◽  
Rolf-Dieter Hoffmann ◽  
Rainer Pöttgen

Small single crystals of the Sm5Ge4-type (space group Pnma) germanides RE2Nb3Ge4 (RE = Sc, Y, Gd-Er, Lu) and Sc2Ta3Ge4 were synthesized by arc-melting of the respective elements. The samples were characterized by powder and single-crystal X-ray diffraction. In all structures, except for Sc2.04Nb2.96Ge4 and Sc2.19Ta2.81Ge4, the rare earth and niobium atoms show full ordering on the three crystallographically independent samarium sites of the Sm5Ge4 type. Two sites with coordination number 6 are occupied by niobium, while the slightly larger site with coordination number 7 is filled with the rare earth element. Small homogeneity ranges with RE=Nb and RE=Ta mixing can be expected for all compounds. The ordered substitution of two rare earth sites by niobium or tantalum has drastic effects on the coordination number and chemical bonding. This was studied for the pair Y5Ge4/Y2Nb3Ge4. Electronic structure calculations show larger charge transfer from yttrium to germanium for Y5Ge4, contrary to Y2Nb3Ge4 which shows stronger covalent bonding due to the presence of Nb replacing Y at two sites


Author(s):  
Judith Bönnighausen ◽  
Stefan Seidel ◽  
Steffen Klenner ◽  
Rainer Pöttgen

Abstract The ternary platinides CaGa5Pt3 (a = 2082.5(4), b = 406.05(8), c = 739.2(1) pm) and EuGa5Pt3 (a = 2085.5(5), b = 412.75(9), c = 738.7(1) pm) were synthesized from the elements in sealed high-melting metal tubes in an induction furnace. CaGa5Pt3 and EuGa5Pt3 are isotypic with CeAl5Pt3 and isopointal with the YNi5Si3 type intermetallic phases (space group Pnma, oP36 and Wyckoff sequence c 9). The structure of EuGa5Pt3 was refined from single crystal X-ray diffractometer data: wR2 = 0.0443, 1063 F 2 values and 56 variables. The gallium and platinum atoms build up a three-dimensional [Ga5Pt3]2− polyanionic network in which the europium atoms fill slightly distorted hexagonal prismatic voids. The Ga–Pt distances within the network range from 249 to 271 pm, emphasizing the covalent bonding character. Temperature dependent magnetic susceptibility measurements indicate diamagnetism for CaGa5Pt3 and isotypic BaGa5Pt3. EuGa5Pt3 behaves like a Curie–Weiss paramagnet above 50 K with an experimental magnetic moment of 8.17(1) µB/Eu atom, indicating divalent europium. Antiferromagnetic ordering sets in at T N = 8.5(1) K. The divalent ground state of europium is confirmed by 151Eu Mössbauer spectroscopy. EuGa5Pt3 shows a single signal at 78 K with an isomer shift of −9.89(4) mm s−1. Full magnetic hyperfine splitting with a hyperfine field of 25.0(2) T is observed at 6 K in the magnetically ordered regime.


2020 ◽  
Vol 235 (4-5) ◽  
pp. 117-125
Author(s):  
Myroslava Horiacha ◽  
Maximilian K. Reimann ◽  
Jutta Kösters ◽  
Vasyl‘ I. Zaremba ◽  
Rainer Pöttgen

AbstractThe quaternary gallium-rich intermetallic phases RE2Pt3Ga4In with RE = Y and Gd-Tm were synthesized by arc-melting of the elements and subsequent annealing. Small single crystals were obtained by high-frequency annealing of the samples in sealed tantalum ampoules. The polycrystalline samples were characterized through their X-ray powder patterns. The RE2Pt3Ga4In phases crystallize with a site ordering variant of the orthorhombic Y2Rh3Sn5 type, space group Cmc 21. The structures of Gd2Pt3Ga4In, Dy2Pt3Ga4.14In0.86, Er2Pt3Ga4.17In0.83 and Tm2Pt3Ga4.21In0.79 were refined from single-crystal X-ray diffraction data. The single crystals reveal small homogeneity ranges RE2Pt3Ga4±xIn1±x. The striking geometrical structural building units are slightly distorted trigonal prisms around the three crystallographically independent platinum atoms: Pt1@RE4Ga2, Pt2@RE2Ga4 and Pt3@RE2Ga2In2. Based on these prismatic building units, the RE2Pt3Ga4In structures can be described as intergrowth variants of TiNiSi and NdRh2Sn4 related structural slabs. Temperature dependent magnetic susceptibility studies of Gd2Pt3Ga4In and Tb2Pt3Ga4In show Curie-Weiss behavior and the experimental magnetic moments confirm stable trivalent gadolinium respectively terbium. Gd2Pt3Ga4In and Tb2Pt3Ga4In order antiferromagnetically at TN = 15.8(1) and 26.0(1) K. Magnetization curves at 3 K show field-induced spin reorientations.


2001 ◽  
Vol 56 (7) ◽  
pp. 620-625 ◽  
Author(s):  
Christian Kranenberg ◽  
Dirk Johrendt ◽  
Albrecht Mewis ◽  
Winfried Kockelmann

Abstract LaAlSi2 (a = 4.196(2), c = 11.437(7) Å; P3̄ml; Z = 2) was synthesized by arc-melting of preheated mixtures of the elements. The compound was investigated by means of X-ray methods and by neutron diffraction. The crystal structure can be described as a stacking variant of two different segments. The first one corresponds to the CaAl2Si2 structure type (LaAl2Si2), the second one with the A1B2 structure type (LaSi2). The segments are stacked along [001]. The electronic structure of the compound is discussed on the basis of LMTO band structure calculations.


2011 ◽  
Vol 66 (12) ◽  
pp. 1241-1247
Author(s):  
Patrick R.N. Misse ◽  
Richard Dronskowski ◽  
Boniface P. T. Fokwa

Powder samples and single crystals of the boride phases MxRh7−xB3 (M = Cr,Mn, Ni; x ≤ 1) have been synthesized from the elements using an arc-melting furnace under purified argon atmosphere in a water-cooled copper crucible. The new phases were characterized from single-crystal and powder X-ray diffraction, as well as semi-quantitative EDX measurements. The obtained phases crystallize in the hexagonal Th7Fe3 structure type (space group P63mc, no. 186, Z = 2). In all cases (M = Cr, Mn, Ni), M is found to preferentially mix with rhodium at only one (6c) of the three available rhodium positions. Pauli paramagnetism was observed in CrxRh7−xB3 (x < 1), whereas both Pauli and temperature-dependent paramagnetisms were found in NiRh6B3.


Sign in / Sign up

Export Citation Format

Share Document