scholarly journals A new locality of Galeopsis angustifolia (Ehrh.) Hoffm. in Pyrzyce Plain (West Pomerania, Poland)

2016 ◽  
Vol 69 (1) ◽  
Author(s):  
Wanda Bacieczko ◽  
Agnieszka Borcz

The aim of the research was to explore a new locality of <em>Galeopsis angustifolia</em> (Lamiaceae), a rare taxa in Poland. The floristic composition of a plant community with <em>G. angustifolia</em> was determined. The species was recorded along the railway line from Pyrzyce to Stargard Szczeciński, near to the railway station in Okunica village, not used since 2004. Currently, the plant community with <em>G. angustifolia</em> occupies a transect &gt;300 m in length. It is also sporadically found in the areas adjacent to the railway line. The species penetrates into ruderal communities from the <em>Artemisietea vulgaris</em> class and creates plant communities with <em>Galeopsis angustifolia</em>, a dominant species in the patches. Synanthropic species, e.g., <em>Rubus caesius</em>, <em>Convolvulus arvensis</em>, <em>Senecio viscosus</em>, meadow species, e.g., <em>Arrhenatherum elatius</em>, <em>Potentilla reptans</em>, <em>Pastinaca sativa</em>, and mosses of dry and rocky habitats also form plant communities with <em>Galeopsis angustifolia</em>.

2020 ◽  
Author(s):  
Abyot Dibaba Hundie ◽  
Teshome Soromessa Urgessa ◽  
Bikila Warkineh Dullo

Abstract Background This study was carried out in Gerba Dima Forest, South-Western Ethiopia, to determine the floristic composition, species diversity and community types along environmental gradients. Ninety sample plots having a size of 25 × 25 m (625 m2) were laid by employing stratified random sampling. Nested plots were used to sample plants of different sizes and different environmental variables. All woody plant species with Diameter at breast height (DBH) ≥ 2.5 cm and height ≥ 1.5 m were recorded in 25 m X 25 m plots. Within the major plots, five 3 m x 3 m subplots (9 m2) was used to collect shrubs with dbh < 2.5 cm and > 1.5 m height. Within each 9 m2subplots, two 1 m2 subplots were used to collect data on the species and abundance of herbaceous plants. Hierarchical (agglomerative) cluster analysis was performed using the free statistical software R version 3.6.1 using package cluster to classify the vegetation into plant community types. Redundancy Analysis (RDA) ordination was used in describing the pattern of plant communities along an environmental gradient. Result One hundred and eighty plant species belonging to 145 genera, 69 families and comprising of 15 endemic species were recorded. Cluster analysis resulted in five different plant communities and this result was supported by the ordination result. RDA result showed altitude was the main environmental variable in determining the plant communities. The ANOVA test indicated that the five community types differ significantly from each other with regard to EC and K. Conclusions The studied forest can play a significant role in biodiversity conservation since it harbours high species diversity and richness. Thus, all Stakeholders including Oromia Forest and wildlife enterprise (OFWE) and the regional government should work to designate the forest as a biosphere reserve and being registered under UNESCO.


Koedoe ◽  
2018 ◽  
Vol 60 (1) ◽  
Author(s):  
Nqobile S. Zungu ◽  
Theo H.C. Mostert ◽  
Rachel E. Mostert

Vegetation research is an important tool for the simplified and effective identification, management and conservation of the very complex ecosystems underlying them. Plant community descriptions offer scientists a summary and surrogate of all the biotic and abiotic factors shaping and driving ecosystems. The aim of this study was to identify, describe and map the plant communities within the uMlalazi Nature Reserve. A total of 149 vegetation plots were sampled using the Braun-Blanquet technique. Thirteen plant communities were identified using a combination of numeric classification (modified Two-way-Indicator Species Analysis) and ordination (non-metric multidimensional scaling). These communities were described in terms of their structure, floristic composition and distribution. An indirect gradient analysis of the ordination results was conducted to investigate the relationship between plant communities and their potentially important underlying environmental drivers. Based on the results, the floristic conservation importance of each plant community was discussed to provide some means to evaluate the relative contribution of the reserve to regional ecosystem conservation targets.Conservation implications: The uMlalazi Nature Reserve represents numerous ecosystems that are disappearing from a rapidly transforming landscape outside of formally protected areas in Zululand. The descriptions of the plant communities of these relatively pristine ecosystems provide conservation authorities with inventories and benchmarks with which the ecological health of similar ecosystems in the region can be measured.


Koedoe ◽  
2018 ◽  
Vol 60 (1) ◽  
Author(s):  
Nqobile S. Zungu ◽  
Theo H.C. Mostert ◽  
Rachel E. Mostert

Vegetation research is an important tool for the simplified and effective identification, management and conservation of the very complex ecosystems underlying them. Plant community descriptions offer scientists a summary and surrogate of all the biotic and abiotic factors shaping and driving ecosystems. The aim of this study was to identify, describe and map the plant communities within the uMlalazi Nature Reserve. A total of 149 vegetation plots were sampled using the Braun-Blanquet technique. Thirteen plant communities were identified using a combination of numeric classification (modified Two-way-Indicator Species Analysis) and ordination (non-metric multidimensional scaling). These communities were described in terms of their structure, floristic composition and distribution. An indirect gradient analysis of the ordination results was conducted to investigate the relationship between plant communities and their potentially important underlying environmental drivers. Based on the results, the floristic conservation importance of each plant community was discussed to provide some means to evaluate the relative contribution of the reserve to regional ecosystem conservation targets.Conservation implications: The uMlalazi Nature Reserve represents numerous ecosystems that are disappearing from a rapidly transforming landscape outside of formally protected areas in Zululand. The descriptions of the plant communities of these relatively pristine ecosystems provide conservation authorities with inventories and benchmarks with which the ecological health of similar ecosystems in the region can be measured.


2021 ◽  
Author(s):  
Abyot Dibaba Hundie ◽  
Teshome Soromessa Urgessa ◽  
Bikila Warkineh Dullo

Abstract Background: This study was carried out in Gerba Dima Forest, South-Western Ethiopia, to determine the floristic composition, species diversity and community types along environmental gradients. Ninety sample plots having a size of 25 X 25m (625m2) were laid by employing stratified random sampling. Nested plots were used to sample plants of different sizes and different environmental variables. All woody plant species with Diameter at breast height (DBH) ≥ 2.5 cm and height ≥ 1.5m were recorded in 25 m X 25 m plots. Hierarchical (agglomerative) cluster analysis was performed using the free statistical software R version 3.6.1 using package cluster to classify the vegetation into plant community types. Redundancy Analysis (RDA) ordination was used in describing the pattern of plant communities along an environmental gradient. Result: One hundred and eighty plant species belonging to 145 genera, 69 families and comprising of 15 endemic species were recorded. Of these, 52 species (28.9%) were trees, 6 species (3.33%) were Trees/shrubs, 31 species (17.22%) were shrubs, 76 species (42.22%) were herbs, and 15 species (8.33%) were Lianas. Rubiaceae, Acanthaceae and Asteraceae were the richest family each represented by 11 genera and 11 species (6.11%), 9 genera and 11 species (6.11%), 6 genera and 11 species (6.11%), respectively of total floristic composition. Cluster analysis resulted in five different plant communities and this result was supported by the ordination result. RDA result showed altitude was the main environmental variable in determining the plant communities. The ANOVA test indicated that the five community types differ significantly from each other with regard to Electrical Conductivity and Potassium. Conclusions: Description of floristic diversity of species in Gerba Dima forest revealed the presence of high species diversity and richness. The presence of endemic plant species in the study forest shows the potential of the area for biodiversity conservation.


2013 ◽  
pp. 106-125 ◽  
Author(s):  
S. M. Yamalov ◽  
A. V. Bayanov ◽  
A. A. Muldashev ◽  
E. A. Averinova

The syntaxonomical analysis of meadow steppe vegetation of the order Festucetalia valesiacae Br.-Bl. et Tx. ex Br.- Bl. 1950 (class Festuco-Brometea Br.-Bl. et Tx. Ex Soó 1947) and their petrophytic variants in the South Urals (within Bashkortostan Republic) is carried out. The diversity of meadow steppe vegetation is presented by 1 class, 1 order, 1 alliance, 2 suballiance, 6 associations and 2 subassociations. Four new associations and two new subassociations are described. The associations are well differentiated geographically and floristically. It is shown that the main environmental factors influencing the floristic composition of plant communities are moisture and rocky habitats.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Mehari Girmay ◽  
Tamrat Bekele ◽  
Sebsebe Demissew ◽  
Ermias Lulekal

Abstract The dryland area in Ethiopia covers a substantial region endowed with diverse plant resources. However, the landmass has received less attention even if it has high ecological, environmental, and economic uses. The present study was conducted in Hirmi woodland vegetation, which is one of the dryland areas in Ethiopia, with the objective of investigating the floristic composition, plant community types, vegetation structure, community-environment relations and its regeneration status. Vegetation and environmental data were collected from 80 sampling plots with a size of 25 m × 25 m designated as the main plots. Diameter at breast height (DBH), height, basal area, density, vertical structure, importance value index (IVI), and frequency were computed. Species diversity and evenness were analyzed using Shannon diversity and evenness indices. The plant community types and vegetation-environment relationships were analyzed using classification and ordination tools, respectively. A total of 171 vascular plant species belonging to 135 genera and 56 families were recorded. About 5.3% of the species were endemic and near-endemic to Ethiopia. The highest number of species was recorded in families Fabaceae (16.4%) and Poaceae (11.7%) followed by Asteraceae (7.0%), Combretaceae, Lamiaceae, and Moraceae (3.5% each). Five plant communities were identified. According to the results from ordination analysis, the floristic composition of these plant communities was significantly affected by altitude, slope, sand, silt, soil organic matter, total nitrogen, and disturbance. The vegetation structure reveals that a large number of individual species was categorized in the lower DBH, frequency, and height classes. The highest Shannon diversity index and evenness values of the study area were 4.21 and 0.95, respectively. Anogeissus leiocarpa, Combretum hartmannianum, Ziziphus mucronata, Terminalia macroptera, and Acacia polyacantha were the species with high IVI. Some endemic plants were in the IUCN red list categories of Ethiopia and Eritrea. The overall regeneration status of the study area was poor because of anthropogenic disturbances and grazing pressures. Although the study area is endowed with high plant species diversity including endemism, it is under poor regeneration status due to various disturbances. To overcome this challenge, integrated management measures including monitoring and application of restoration techniques by taking into consideration the significant environmental factors associated with species diversity as well as observed regeneration status and IUCN threat level of the species are highly recommended.


Koedoe ◽  
2018 ◽  
Vol 60 (1) ◽  
Author(s):  
Nqobile S. Zungu ◽  
Theo H.C. Mostert ◽  
Rachel E. Mostert

Vegetation research is an important tool for the simplified and effective identification, management and conservation of the very complex ecosystems underlying them. Plant community descriptions offer scientists a summary and surrogate of all the biotic and abiotic factors shaping and driving ecosystems. The aim of this study was to identify, describe and map the plant communities within the uMlalazi Nature Reserve. A total of 149 vegetation plots were sampled using the Braun-Blanquet technique. Thirteen plant communities were identified using a combination of numeric classification (modified Two-way-Indicator Species Analysis) and ordination (non-metric multidimensional scaling). These communities were described in terms of their structure, floristic composition and distribution. An indirect gradient analysis of the ordination results was conducted to investigate the relationship between plant communities and their potentially important underlying environmental drivers. Based on the results, the floristic conservation importance of each plant community was discussed to provide some means to evaluate the relative contribution of the reserve to regional ecosystem conservation targets.Conservation implications: The uMlalazi Nature Reserve represents numerous ecosystems that are disappearing from a rapidly transforming landscape outside of formally protected areas in Zululand. The descriptions of the plant communities of these relatively pristine ecosystems provide conservation authorities with inventories and benchmarks with which the ecological health of similar ecosystems in the region can be measured.


2019 ◽  
Author(s):  
Coline Deveautour ◽  
Sally Power ◽  
Kirk Barnett ◽  
Raul Ochoa-Hueso ◽  
Suzanne Donn ◽  
...  

Climate models project overall a reduction in rainfall amounts and shifts in the timing of rainfall events in mid-latitudes and sub-tropical dry regions, which threatens the productivity and diversity of grasslands. Arbuscular mycorrhizal fungi may help plants to cope with expected changes but may also be impacted by changing rainfall, either via the direct effects of low soil moisture on survival and function or indirectly via changes in the plant community. In an Australian mesic grassland (former pasture) system, we characterised plant and arbuscular mycorrhizal (AM) fungal communities every six months for nearly four years to two altered rainfall regimes: i) ambient, ii) rainfall reduced by 50% relative to ambient over the entire year and iii) total summer rainfall exclusion. Using Illumina sequencing, we assessed the response of AM fungal communities sampled from contrasting rainfall treatments and evaluated whether variation in AM fungal communities was associated with variation in plant community richness and composition. We found that rainfall reduction influenced the fungal communities, with the nature of the response depending on the type of manipulation, but that consistent results were only observed after more than two years of rainfall manipulation. We observed significant co-associations between plant and AM fungal communities on multiple dates. Predictive co-correspondence analyses indicated more support for the hypothesis that fungal community composition influenced plant community composition than vice versa. However, we found no evidence that altered rainfall regimes were leading to distinct co-associations between plants and AM fungi. Overall, our results provide evidence that grassland plant communities are intricately tied to variation in AM fungal communities. However, in this system, plant responses to climate change may not be directly related to impacts of altered rainfall regimes on AM fungal communities. Our study shows that AM fungal communities respond to changes in rainfall but that this effect was not immediate. The AM fungal community may influence the composition of the plant community. However, our results suggest that plant responses to altered rainfall regimes at our site may not be resulting via changes in the AM fungal communities.


2015 ◽  
pp. 26-37
Author(s):  
V. B. Golub ◽  
V. V. Bondareva ◽  
A. N. Sorokin ◽  
L. F. Nikolaychuk

Plant communities with reed domination (Phragmites australis agg.) occupy the large areas in the Lower Volga Valley and especially in the river delta. We have set the task to reveal the diversity of these communities in the Lower Volga Valley. For this purpose, we applied the database that is registered in the Global Index of Vegetation-Plot Databases (GIVD) under the EU-RU–002 index (http://www.givd.info/) and includes 14871 relevés made during the period from 1924 to 2013. Communities with the dominance of reed were defined as such, if the coverage of this plant was more than 50 %. We have found 375 such relevés in the database. At first, one basal community, 3 associations and 3 subassociations with domination of Phragmites australis agg. were distinguished in the Lower Volga Valley. All processing and analysis of relevés were performed using the software package JUICE 7.0. (Tichý, 2002). The «Cocktail» method was applied to establish the sociological groups that indicate environmental conditions (Bruelheide, 2000). The expert system for selection from the database of relevés by means of these groups was created. It is allowed us to ascribe relevés to earlier distinguished associations, subassociations and basal community. 171 relevés have been identified by the expert system and they were assigned to association, subassociation or the basal community. 204 relevés were not referred to any association, subassociation or the basal community. We wanted to answer the question: are there among these 204 relevés, which could be interpreted as the new syntaxa, giving them the proper ecological characteristics? For this purpose, the cluster analysis of 204 relevés has been carried out. The optimal level of clustering was determined by calculating the index of “crispness of classification” (Botta-Dukát et al., 2005). The greatest “crispness of classification” was reached at allocation of 13 clusters. Consideration of the floristic composition of allocated groups had shown that 11 of them were the transitional plant communities among the earlier established syntaxa. Only two clusters were differed in rather original structure that we could explain by the influence of environment factors. We have identified them as new associations Rubio tataricae-Phragmitetum australis and Cynancho acuti-Phragmitetum australis. All associations with the dominance of Phragmites australis agg. distinguished in the Lower Volga Valley were included in the alliance Phragmition communis Koch 1926, order Phragmitetalia communis Koch 1926. In literary sources from the ecological point of view these syntaxa are defined as the wetland communities, which are closely linked to water bodies (Šumberová et al., 2011; Ermakov, 2012). However, in many cases this definition does not correspond to the ecology of plant communities with the dominance of reed in the lower reaches of the Volga River. Ecotops of these communities are flooded for up to 2–3 months in a year and then they dry out. In the autumn, the ground water level can drop to a depth of one meter (Golub et al., 2011). The plant satellites of the reed here are often mesophytic plants such as Rubus caesius, Calamagrostis epigeios, Phalaris arundinacea, Rubia tatarica, Althaea officinalis, and Rumex stenophyllus. Therefore, the inclusion of phytocoenosises with domination of the reed in the lower reaches of the Volga River in the alliance Phragmition communis is rather relative. A correct placement of these plant communities in the system of vegetation syntaxa of the arid areas can be made only if it is based on original data obtained from much bigger territory than the Lower Volga Valley. In future geobotanical studies, it is desirable to divide the aggregation of Phragmites australis agg. into smaller species taxa.


2009 ◽  
pp. 27-53
Author(s):  
A. Yu. Kudryavtsev

Diversity of plant communities in the nature reserve “Privolzhskaya Forest-Steppe”, Ostrovtsovsky area, is analyzed on the basis of the large-scale vegetation mapping data from 2000. The plant community classi­fication based on the Russian ecologic-phytocoenotic approach is carried out. 12 plant formations and 21 associations are distinguished according to dominant species and a combination of ecologic-phytocoenotic groups of species. A list of vegetation classification units as well as the characteristics of theshrub and woody communities are given in this paper.


Sign in / Sign up

Export Citation Format

Share Document