THE USE OF RADAR INTERFEROMETRY IN THE CARTOGRAPHIC REPRESENTATION OF THE SUBSIDENCE PHENOMENON

Author(s):  
Maricel Palamariu
Keyword(s):  
2021 ◽  
Vol 13 (11) ◽  
pp. 2173
Author(s):  
Kamil Kowalczyk ◽  
Katarzyna Pajak ◽  
Beata Wieczorek ◽  
Bartosz Naumowicz

The main aim of the article was to analyse the actual accuracy of determining the vertical movements of the Earth’s crust (VMEC) based on time series made of four measurement techniques: satellite altimetry (SA), tide gauges (TG), fixed GNSS stations and radar interferometry. A relatively new issue is the use of the persistent scatterer InSAR (PSInSAR) time series to determine VMEC. To compare the PSInSAR results with GNSS, an innovative procedure was developed: the workflow of determining the value of VMEC velocities in GNSS stations based on InSAR data. In our article, we have compiled 110 interferograms for ascending satellites and 111 interferograms for descending satellites along the European coast for each of the selected 27 GNSS stations, which is over 5000 interferograms. This allowed us to create time series of unprecedented time, very similar to the time resolution of time series from GNSS stations. As a result, we found that the obtained accuracies of the VMEC determined from the PSInSAR are similar to those obtained from the GNSS time series. We have shown that the VMEC around GNSS stations determined by other techniques are not the same.


2020 ◽  
Vol 39 (4) ◽  
pp. 5311-5318
Author(s):  
Zhengquan Hu ◽  
Yu Liu ◽  
Xiaowei Niu ◽  
Guoping Lei

As aerospace technology, computer technology, network communication technology and information technology become more and more perfect, a variety of sensors for measurement and remote sensing are constantly emerging, and the ability to acquire remote sensing data is also continuously enhanced. Synthetic Aperture Radar Interferometry (InSAR) technology greatly expands the function and application field of imaging radar. Differential InSAR (DInSAR) developed based on InSAR technology has the advantages of high precision and all-weather compared with traditional measurement methods. However, DInSAR-based deformation monitoring is susceptible to spatiotemporal coherence, orbital errors, atmospheric delays, and elevation errors. Since phase noise is the main error of InSAR, to determine the appropriate filtering parameters, an iterative adaptive filtering method for interferogram is proposed. For the limitation of conventional DInSAR, to improve the accuracy of deformation monitoring as much as possible, this paper proposes a deformation modeling based on ridge estimation and regularization as a constraint condition, and introduces a variance component estimation to optimize the deformation results. The simulation experiment of the iterative adaptive filtering method and the deformation modeling proposed in this paper shows that the deformation information extraction method based on differential synthetic aperture radar has high precision and feasibility.


2014 ◽  
Vol 637 ◽  
pp. 163-177 ◽  
Author(s):  
Benedetta Antonielli ◽  
Oriol Monserrat ◽  
Marco Bonini ◽  
Gaia Righini ◽  
Federico Sani ◽  
...  

1996 ◽  
Vol 42 (140) ◽  
pp. 10-22 ◽  
Author(s):  
Ian Joughin ◽  
Dale Winebrenner ◽  
Mark Fahnestock ◽  
Ron Kwok ◽  
William Krabill

AbstractDetailed digital elevation models (DEMs) do not exist for much of the Greenland and Antartic ice sheets. Radar altimetry is at present the primary, in many cases the only, source of topographic data over the ice sheets, but the horizontal resolution of such data is coarse. Satellite-radar interferometry uses the phase difference between pairs of synthetic aperture radar (SAR) images to measure both ice-sheet topography and surface displacement. We have applied this technique using ERS-1 SAR data to make detailed (i.e. 80 m horizontal resolution) maps of surface topography in a 100 km by 300 km strip in West Greenland, extending northward from just above Jakobshavns Isbræ. Comparison with а 76 km long line of airborne laser-altimeter data shows that We have achieved a relative accuracy of 2.5 m along the profile. These observations provide a detailed view of dynamically Supported topography near the margin of an ice sheet. In the final section We compare our estimate of topography with phase contours due to motion, and confirm our earlier analysis concerning vertical ice-sheet motion and complexity in ERS-1 SAR interferograms.


Science ◽  
1993 ◽  
Vol 262 (5139) ◽  
pp. 1525-1530 ◽  
Author(s):  
R. M. Goldstein ◽  
H. Engelhardt ◽  
B. Kamb ◽  
R. M. Frolich

Annals of GIS ◽  
2010 ◽  
Vol 16 (2) ◽  
pp. 91-102 ◽  
Author(s):  
Linlin Ge ◽  
Xiaojing Li ◽  
Hsing-chung Chang ◽  
Alex Hayman Ng ◽  
Kui Zhang ◽  
...  

Geology ◽  
2011 ◽  
Vol 39 (6) ◽  
pp. 551-554 ◽  
Author(s):  
Pablo J. González ◽  
José Fernández

Author(s):  
Lei Zhang ◽  
Jun Hu ◽  
Xiaoli Ding ◽  
Yangmao Wen ◽  
Hongyu Liang

Sign in / Sign up

Export Citation Format

Share Document