scholarly journals An Analysis of Vertical Crustal Movements along the European Coast from Satellite Altimetry, Tide Gauge, GNSS and Radar Interferometry

2021 ◽  
Vol 13 (11) ◽  
pp. 2173
Author(s):  
Kamil Kowalczyk ◽  
Katarzyna Pajak ◽  
Beata Wieczorek ◽  
Bartosz Naumowicz

The main aim of the article was to analyse the actual accuracy of determining the vertical movements of the Earth’s crust (VMEC) based on time series made of four measurement techniques: satellite altimetry (SA), tide gauges (TG), fixed GNSS stations and radar interferometry. A relatively new issue is the use of the persistent scatterer InSAR (PSInSAR) time series to determine VMEC. To compare the PSInSAR results with GNSS, an innovative procedure was developed: the workflow of determining the value of VMEC velocities in GNSS stations based on InSAR data. In our article, we have compiled 110 interferograms for ascending satellites and 111 interferograms for descending satellites along the European coast for each of the selected 27 GNSS stations, which is over 5000 interferograms. This allowed us to create time series of unprecedented time, very similar to the time resolution of time series from GNSS stations. As a result, we found that the obtained accuracies of the VMEC determined from the PSInSAR are similar to those obtained from the GNSS time series. We have shown that the VMEC around GNSS stations determined by other techniques are not the same.

2021 ◽  
Author(s):  
Milaa Murshan ◽  
Balaji Devaraju ◽  
Nagarajan Balasubramanian ◽  
Onkar Dikshit

<p>Satellite altimetry provides measurements of sea surface height of centimeter-level accuracy over open oceans. However, its accuracy reduces when approaching the coastal areas and over land regions. Despite this downside, altimetric measurements are still applied successfully in these areas through altimeter retracking processes. This study aims to calibrate and validate retracted sea level data of Envisat, ERS-2, Topex/Poseidon, Jason-1, 2, SARAL/AltiKa, Cryosat-2 altimetric missions near the Indian coastline. We assessed the reliability, quality, and performance of these missions by comparing eight tide gauge (TG) stations along the Indian coast. These are Okha, Mumbai, Karwar, and Cochin stations in the Arabian Sea, and Nagapattinam, Chennai, Visakhapatnam, and Paradip in the Bay of Bengal. To compare the satellite altimetry and TG sea level time series, both datasets are transformed to the same reference datum. Before the calculation of the bias between the altimetry and TG sea level time series, TG data are corrected for Inverted Barometer (IB) and Dynamic Atmospheric Correction (DAC). Since there are no prior VLM measurements in our study area, VLM is calculated from TG records using the same procedure as in the Technical Report NOS organization CO-OPS 065. </p><p>Keywords— Tide gauge, Sea level, North Indian ocean, satellite altimetry, Vertical land motion</p>


Author(s):  
Kamil Kowalczyk ◽  
Janusz Bogusz

To estimate the relationship between vertical movements of the Earth’s crust, geoid temporal changes and Mean Sea Level (MSL) variations, a knowledge about the absolute (determined from satellite and space techniques) height changes over time is required. In this paper, we give an idea of determining the height changes with a use of Vertical Switching Edge Detection (VSED) algorithm. On the basis of the least squares estimation, the VSED method detects the discontinuities in time series and determines the values of jumps at the same time. We used the time series from PPP (Precise Point Positioning) solution obtained in NGL (Nevada Geodetic Laboratory) using satellite data gathered at more than 50 permanent stations located in Latvia, Lithuania and northeastern Poland. The minimum time span of data was set up to 3 years. Data were pre-analyzed by removing outliers and interpolating small gaps. The obtained results give an overview of a possibility of the proposed method to be used and the ongoing vertical movements on the area we considered.


Author(s):  
F.N Teferle ◽  
R.M Bingley ◽  
S.D.P Williams ◽  
T.F Baker ◽  
A.H Dodson

Researchers investigating climate change have used historical tide-gauge measurements from all over the world to investigate the changes in sea-level that have occurred over the last century or so. However, such estimates are a combination of any true sea-level variations and any vertical movements of the land at the specific tide-gauge. For a tide- gauge record to be used to determine the climate related component of changes in sea-level, it is therefore necessary to correct for the vertical land movement component of the observed change in sea-level. In 1990, the Institute of Engineering Surveying and Space Geodesy and Proudman Oceanographic Laboratory started developing techniques based on the Global Positioning System (GPS) for measuring vertical land movements (VLM) at tide-gauges in the UK. This paper provides brief details of these early developments and shows how they led to the establishment of continuous GPS (CGPS) stations at a number of tide-gauges. The paper then goes on to discuss the use of absolute gravity (AG), as an independent technique for measuring VLM at tide-gauges. The most recent results, from CGPS time-series dating back to 1997 and AG time-series dating back to 1995/1996, are then used to demonstrate the complementarity of these two techniques and their potential for providing site-specific estimates of VLM at tide-gauges in the UK.


Author(s):  
Carlos Antunes

Data collected at the Cascais tide gauge, located on the west coast of Portugal Mainland, have been analyzed and sea level rise rates have been updated. Based on a bootstrapping linear regression model and on polynomial adjustments, time series are used to calculate different empirical projections for the 21st century sea level rise, by estimating the initial velocity and its corresponding acceleration. The results are consistent to an accelerated sea level rise, showing evidence of a faster rise than previous century estimates. Based on different numerical methods of second order polynomial fitting, it is possible to build a set of projection models of relative sea level rise. Appling the same methods to regional sea level anomaly from satellite altimetry, additional projections are also built with good consistency. Both data sets, tide gauge and satellite altimetry data, enabled the development of an ensemble of projection models. The relative sea level rise projections are crucial for national coastal planning and management since extreme sea level scenarios can potentially cause erosion and flooding. Based on absolute vertical velocities obtained by integrating global sea level models, neo-tectonic studies and permanent Global Positioning System (GPS) station time series, it is possible to transform relative into absolute sea level rise scenarios, and vice-versa, allowing the generation of absolute sea level rise projection curves and its comparison with already established global projections. The sea level rise observed at the Cascais tide gauge has always shown a significant correlation with global sea level rise observations, evidencing relatively low rates of composed vertical land velocity from tectonic and post-glacial isostatic adjustment, and residual synoptic regional dynamic effects rather than a trend. An ensemble of sea level projection models for the 21st century is proposed with its corresponding probability density function, both for relative and absolute sea level rise for the west coast of Portugal Mainland.


2020 ◽  
Author(s):  
Muharrem Hilmi Erkoç ◽  
Uğur Doğan ◽  
Seda Özarpacı ◽  
Hasan Yildiz ◽  
Erdinç Sezen

<p>This study aims to estimate vertical land motion (VLM) at tide gauges (TG), located in the Mediterranean, Aegean and the Marmara Sea coasts of Turkey, from differences of multimission satellite altimetry and TG sea level time series. Initially, relative sea level trends are estimated at 7 tide gauges stations operated by the Turkish General Directorate of Mapping over the period 2001-2019. Subsequently, absolute sea level trends independent from VLM are computed from multimission satellite altimetry data over the same period. We have computed estimates of linear trends of difference time series between altimetry and tide gauge sea level after removing seasonal signals by harmonic analysis from each time series to estimate the vertical land motion (VLM) at tide gauges. Traditional way of VLM determination at tide gauges is to use GPS@TG or preferably CGPS@TG data. We therefore, processed these GPS data, collected over the years by several TG-GPS campaigns and by continuous GPS stations close to the TG processed by GAMIT/GLOBK software. Subsequently, the GPS and CGPS vertical coordinate time series are used to estimate VLM. These two different VLM estimates, one from GPS and CGPS coordinate time series and other from altimetry-TG sea level time series differences are compared.</p><p> </p><p><strong>Keywords: Vertical land motion, Sea Level Changes, Tide gauge, Satellite altimetry, GPS, CGPS </strong></p>


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Diana Haritonova

Abstract The objective of this study is to investigate the effect of the Baltic Sea non-tidal loading in the territory of Latvia using observations of the GNSS continuously operating reference stations (CORS) of LatPos, EUPOS®-Riga, EPN and EstPos networks. The GNSS station daily coordinate time series obtained in a double-difference (DD) mode were used. For representation of the sea level dynamics, the Latvian tide gauge records were used. Performed correlation analysis is based on yearly data sets of these observations for the period from 2012 up to 2020. The approach discloses how the non-tidal loading can induce variations in the time series of the regional GNSS station network. This paper increases understanding of the Earth’s surface displacements occurring due to the non-tidal loading effect in Latvia, and is intended to raise the importance and necessity of improved Latvian GNSS time series by removing loading effects.


2020 ◽  
Vol 14 (3) ◽  
pp. 361-378
Author(s):  
V. B. Mendes ◽  
S. M. Barbosa ◽  
D. Carinhas

AbstractIn this study, we estimate vertical land motion for 35 stations primarily located along the coastline of Portugal and Spain, using GPS time series with at least eight years of observations. Based on this set of GPS stations, our results show that vertical land motion along the Iberian coastline is characterized, in general, by a low to moderate subsidence, ranging from −2.2 mm yr−1 to 0.4 mm yr−1, partially explained by the glacial isostatic adjustment geophysical signal. The estimates of vertical land motion are subsequently applied in the analysis of tide gauge records and compared with geocentric estimates of sea level change. Geocentric sea level for the Iberian Atlantic coast determined from satellite altimetry for the last three decades has a mean of 2.5 ± 0.6 mm yr−1, with a significant range, as seen for a subset of grid points located in the vicinity of tide gauge stations, which present trends varying from 1.5 mm yr−1 to 3.2 mm yr−1. Relative sea level determined from tide gauges for this region shows a high degree of spatial variability, that can be partially explained not only by the difference in length and quality of the time series, but also for possible undocumented datum shifts, turning some trends unreliable. In general, tide gauges corrected for vertical land motion produce smaller trends than satellite altimetry. Tide gauge trends for the last three decades not corrected for vertical land motion range from 0.3 mm yr−1 to 5.0 mm yr−1 with a mean of 2.6 ± 1.4 mm yr−1, similar to that obtained from satellite altimetry. When corrected for vertical land motion, we observe a reduction of the mean to ∼1.9 ± 1.4 mm yr−1. Actions to improve our knowledge of vertical land motion using space geodesy, such as establishing stations in co-location with tide gauges, will contribute to better evaluate sea level change and its impacts on coastal regions.


2020 ◽  
Vol 8 (11) ◽  
pp. 949 ◽  
Author(s):  
Francesco De Biasio ◽  
Giorgio Baldin ◽  
Stefano Vignudelli

We propose a revisited approach to estimating sea level change trends based on the integration of two measuring systems: satellite altimetry and tide gauge (TG) time series of absolute and relative sea level height. Quantitative information on vertical crustal motion trends at six TG stations of the Adriatic Sea are derived by solving a constrained linear inverse problem. The results are verified against Global Positioning System (GPS) estimates at some locations. Constraints on the linear problem are represented by estimates of relative vertical land motion between TG couples. The solution of the linear inverse problem is valid as long as the same rates of absolute sea level rise are observed at the TG stations used to constrain the system. This requirement limits the applicability of the method with variable absolute sea level trends. The novelty of this study is that we tried to overcome such limitations, subtracting the absolute sea level change estimates observed by the altimeter from all relevant time series, but retaining the original short-term variability and associated errors. The vertical land motion (VLM) solution is compared to GPS estimates at three of the six TGs. The results show that there is reasonable agreement between the VLM rates derived from altimetry and TGs, and from GPS, considering the different periods used for the processing of VLM estimates from GPS. The solution found for the VLM rates is optimal in the least square sense, and no longer depends on the altimetric absolute sea level trend at the TGs. Values for the six TGs’ location in the Adriatic Sea during the period 1993–2018 vary from −1.41 ± 0.47 mm y−1 (National Research Council offshore oceanographic tower in Venice) to 0.93 ± 0.37 mm y−1 (Rovinj), while GPS solutions range from −1.59 ± 0.65 (Venice) to 0.10 ± 0.64 (Split) mm y−1. The absolute sea level rise, calculated as the sum of relative sea level change rate at the TGs and the VLM values estimated in this study, has a mean of 2.43 mm y−1 in the period 1974–2018 across the six TGs, a mean standard error of 0.80 mm y−1, and a sample dispersion of 0.18 mm y−1.


Sign in / Sign up

Export Citation Format

Share Document