Satellite Radar Interferometry for Monitoring Ice Sheet Motion: Application to an Antarctic Ice Stream

Science ◽  
1993 ◽  
Vol 262 (5139) ◽  
pp. 1525-1530 ◽  
Author(s):  
R. M. Goldstein ◽  
H. Engelhardt ◽  
B. Kamb ◽  
R. M. Frolich
1996 ◽  
Vol 42 (140) ◽  
pp. 10-22 ◽  
Author(s):  
Ian Joughin ◽  
Dale Winebrenner ◽  
Mark Fahnestock ◽  
Ron Kwok ◽  
William Krabill

AbstractDetailed digital elevation models (DEMs) do not exist for much of the Greenland and Antartic ice sheets. Radar altimetry is at present the primary, in many cases the only, source of topographic data over the ice sheets, but the horizontal resolution of such data is coarse. Satellite-radar interferometry uses the phase difference between pairs of synthetic aperture radar (SAR) images to measure both ice-sheet topography and surface displacement. We have applied this technique using ERS-1 SAR data to make detailed (i.e. 80 m horizontal resolution) maps of surface topography in a 100 km by 300 km strip in West Greenland, extending northward from just above Jakobshavns Isbræ. Comparison with а 76 km long line of airborne laser-altimeter data shows that We have achieved a relative accuracy of 2.5 m along the profile. These observations provide a detailed view of dynamically Supported topography near the margin of an ice sheet. In the final section We compare our estimate of topography with phase contours due to motion, and confirm our earlier analysis concerning vertical ice-sheet motion and complexity in ERS-1 SAR interferograms.


1995 ◽  
Vol 22 (5) ◽  
pp. 571-574 ◽  
Author(s):  
Ian R. Joughin ◽  
Dale P. Winebrenner ◽  
Mark A. Fahnestock

1996 ◽  
Vol 42 (142) ◽  
pp. 564-575 ◽  
Author(s):  
Ian Joughin ◽  
Ron Kwok ◽  
Mark Fahnestock

AbstractSatellite radar interferometry provides glaciologists with an important new tool for determining the motion and topography of large ice sheets. We examine the sources of error in interferometrically derived ice-motion measurements, including those errors due to inaccurate estimates of the interfero-metric baseline. Several simulations are used to assess baseline accuracy in terms of tie-point error and the number and distribution of tie points. These results give insight into how best to select tie points, and also demonstrate the level of accuracy that can be achieved. Examination of two representative cases likely to occur in mapping ice-sheet motion leads to the conclusion that with adequate tie-point information ice velocity can be measured accurately to within a few meters per year. A method to correct horizontal velocity estimates for the effect of vertical displacement using surface slopes is also developed. Finally, we estimate the single-component velocity field for an area on Humboldt Glacier, northern Greenland, using interferograms formed from ERS-1 SAR image. We estimatе that these velocity measurements are accurate to within 2.3 m year1.


1998 ◽  
Vol 27 ◽  
pp. 61-67 ◽  
Author(s):  
Ted A. Scambos ◽  
Nadine A. Nereson ◽  
Mark A. Fahnestock

Detailed surface topography is presented for two dome features of the West Antarctic ice sheet, Siple Dome and Roosevelt Island. Both these domes show linear topographic features, or “scars”, on [heir flanks. Topography is determined from a combination of existing digital elevation models (DEMs; based on satellite radar altimctry), photoclinomctry (using advanced very high-resolution radiometer images to quantitatively infer topographic details) and, in the case of Siple Dome, surface global positioning system topographic profiles. The enhanced DEMs provide heights and shapes for a variety of surface features in the vicinity of the domes, such as scars, surface undulations, ice rises and the domes themselves. The DEMs indicate that the scar features on both domes are high relative to adjacent rapid-ice-llow areas. Scars and other related morphologic features on the flanks of both domes can be interpreted as former active ice streams and stream margins. For Siple Dome, this interpretation is confirmed by radar profiling. The evolution of the topographic height of the scars is a combination of two processes: initial elevation rise due to a positive mass balance at the shear margin in the immediate aftermath of shut-down of the ice stream; and later downslope flow as the scars become part of the dome and the dome surface velocity field. Superimposed on these events is accumulation, which buries the original shear margin but elevates the scar surface expression. Depending upon the timing of shut-flown, and the relative magnitude of these processes, the height of the scars above the current rapidly flowing surfaces may be indicative of ice-sheet thinning since shut-down, or dome expansion across former ice-stream trunks in a more or less steady-state ice sheet.


1996 ◽  
Vol 42 (140) ◽  
pp. 10-22 ◽  
Author(s):  
Ian Joughin ◽  
Dale Winebrenner ◽  
Mark Fahnestock ◽  
Ron Kwok ◽  
William Krabill

Abstract Detailed digital elevation models (DEMs) do not exist for much of the Greenland and Antartic ice sheets. Radar altimetry is at present the primary, in many cases the only, source of topographic data over the ice sheets, but the horizontal resolution of such data is coarse. Satellite-radar interferometry uses the phase difference between pairs of synthetic aperture radar (SAR) images to measure both ice-sheet topography and surface displacement. We have applied this technique using ERS-1 SAR data to make detailed (i.e. 80 m horizontal resolution) maps of surface topography in a 100 km by 300 km strip in West Greenland, extending northward from just above Jakobshavns Isbræ. Comparison with а 76 km long line of airborne laser-altimeter data shows that We have achieved a relative accuracy of 2.5 m along the profile. These observations provide a detailed view of dynamically Supported topography near the margin of an ice sheet. In the final section We compare our estimate of topography with phase contours due to motion, and confirm our earlier analysis concerning vertical ice-sheet motion and complexity in ERS-1 SAR interferograms.


1996 ◽  
Vol 42 (142) ◽  
pp. 564-575 ◽  
Author(s):  
Ian Joughin ◽  
Ron Kwok ◽  
Mark Fahnestock

AbstractSatellite radar interferometry provides glaciologists with an important new tool for determining the motion and topography of large ice sheets. We examine the sources of error in interferometrically derived ice-motion measurements, including those errors due to inaccurate estimates of the interfero-metric baseline. Several simulations are used to assess baseline accuracy in terms of tie-point error and the number and distribution of tie points. These results give insight into how best to select tie points, and also demonstrate the level of accuracy that can be achieved. Examination of two representative cases likely to occur in mapping ice-sheet motion leads to the conclusion that with adequate tie-point information ice velocity can be measured accurately to within a few meters per year. A method to correct horizontal velocity estimates for the effect of vertical displacement using surface slopes is also developed. Finally, we estimate the single-component velocity field for an area on Humboldt Glacier, northern Greenland, using interferograms formed from ERS-1 SAR image. We estimatе that these velocity measurements are accurate to within 2.3 m year1.


2021 ◽  
Vol 11 (3) ◽  
pp. 1115
Author(s):  
Aleš Bezděk ◽  
Jakub Kostelecký ◽  
Josef Sebera ◽  
Thomas Hitziger

Over the last two decades, a small group of researchers repeatedly crossed the Greenland interior skiing along a 700-km long route from east to west, acquiring precise GNSS measurements at exactly the same locations. Four such elevation profiles of the ice sheet measured in 2002, 2006, 2010 and 2015 were differenced and used to analyze the surface elevation change. Our goal is to compare such locally measured GNSS data with independent satellite observations. First, we show an agreement in the rate of elevation change between the GNSS data and satellite radar altimetry (ERS, Envisat, CryoSat-2). Both datasets agree well (2002–2015), and both correctly display local features such as an elevation increase in the central part of the ice sheet and a sharp gradual decline in the surface heights above Jakobshavn Glacier. Second, we processed satellite gravimetry data (GRACE) in order for them to be comparable with local GNSS measurements. The agreement is demonstrated by a time series at one of the measurement sites. Finally, we provide our own satellite gravimetry (GRACE, GRACE-FO, Swarm) estimate of the Greenland mass balance: first a mild decrease (2002–2007: −210 ± 29 Gt/yr), then an accelerated mass loss (2007–2012: −335 ± 29 Gt/yr), which was noticeably reduced afterwards (2012–2017: −178 ± 72 Gt/yr), and nowadays it seems to increase again (2018–2019: −278 ± 67 Gt/yr).


Sign in / Sign up

Export Citation Format

Share Document