ANALYSIS OF THE DIVERSITY OF HARD COAL MINES IN POLAND IN TERMS OF THEIR METHANE, SEISMIC AND COAL DUST EXPLOSION HAZARDS

Author(s):  
Magdalena Tutak
2019 ◽  
Vol 2 (1) ◽  
pp. 91-100
Author(s):  
Magdalena Tutak

Abstract Hard coal mines and mining enterprises involved in hard coal exploitation in the area of the Upper Silesian Coal Basin (Górnośląskie Zagłębie Węglowe) are characterised by the presence of natural hazards typical of this type of exploitation. These hazards include the risks related to methane, coal dust explosion, endogenous fires, as well as rock burst and caving of roof rocks. The article presents the results of a taxonomic analysis aimed at determining the similarity of hard coal mines and mining enterprises in Poland in terms of the dangerous incidents caused by the risks related to methane, coal dust explosion, endogenous fires, as well as rock burst and caving of roof rocks. The analysis was carried out for the 2008-2018 data and encompassed a total of 26 hard coal mines and mining enterprises located in the Upper Silesian Coal Basin. The analysis was performed using the k-means method of non-hierarchical clustering. The main objective of the article was to determine homogenous groups (clusters) of mines exhibiting the greatest similarity in terms of dangerous incidents caused by the activation of natural hazards in the years 2008-2018. These data can be successfully used for the development of preventive measures and risk analyses for these enterprises.


2013 ◽  
Vol 198 ◽  
pp. 120-125 ◽  
Author(s):  
Leszek Kasprzyczak ◽  
Stanisław Trenczek ◽  
Maciej Cader

The GMRI robot is capable of inspecting hazardous zones of methane and/or coal dust explosion in hard coal mines. The robot enables remote measurements of the concentrations of methane, carbon monoxide, carbon dioxide, oxygen, temperature, and humidity. Cameras enable the robot to observe the state of the excavation. All electronic circuits of the robot, for measurements, control, transmission, and supply, are intrinsically safe. The transmission of data and control commands from/to the operators console are performed via an electric wire. Moreover, the wire enables to transmit intrinsically safe electric energy and is used to charge one of the accumulators. Thanks to that, the robot can operate in an isolated excavation for 3 months. An intrinsically safe pneumatic drive has been applied for setting wheels in motion. The non-commercial robot prototype was tested in a real excavation in an active hard coal mine. The technical solutions have been presented in the paper.


2018 ◽  
Vol 35 ◽  
pp. 01004
Author(s):  
Marek Borowski ◽  
Zbigniew Kuczera

Methane hazard often occurs in hard coal mines and causes very serious accidents and can be the reason of methane or methane and coal dust explosions. History of coal mining shows that methane released from the rock mass to the longwall area was responsible for numerous mining disasters. The main source of methane are coal deposits because it is autochthonous gas and is closely related with carbonification and forming of coal deposits. Degree of methane saturation in coal deposits depends on numerous factors; mainly on presence or lack of insulating layers in cover deposit that allow or do not on degasification and easily methane outflow into surroundings. Hence in coal mining there are coal deposits that contain only low degree of methane saturation in places where is lack of insulating layers till high in methane coal deposits occurring in insulating claystones or in shales. Conducting mining works in coal deposits of high methane hazard without using of special measures to combat (ventilation, methane drainage) could be impossible. Control of methane hazard depends also on other co-occuring natural dangers for which used preventive actions eliminate methane hazard. Safety in mines excavating coal deposits saturated with methane depends on the correct estimation of methane hazard, drawn up forecasts, conducted observations, hazard control as well as undertaken prevention measures. Methane risk prevention includes identification and control methods of methane hazards as well as means of combating the explosive accumulation of methane in longwall workings. The main preventive actions in underground coal mines are: effective ventilation that prevents forming of methane fuses or placed methane accumulation in headings ventilated by airflow created by main fans and in headings with auxiliary ventilation, methane drainage using drain holes that are drilled from underground headings or from the surface, methanometry control of methane concentration in the air; location of the sensors is defined by law, additional ventilation equipment used in places of lower intensity of ventilation and places where methane is concentrated.


Author(s):  
Jarosław Brodny ◽  
Magdalena Tutak

The mining production process is exposed to a series of different hazards. One of them is the accumulation of dust which can pose a serious threat to the life and health of mine workers. The analysis of dust hazard in hard coal mining should include two aspects. One is the risk of coal dust explosions, which poses a direct risk of injury or even loss of life, the second is the risk of harmful dust, associated with the possibility of negative health effects as a result of long-term exposure to dust in the worker’s body. The technologies currently applied in underground mining produce large amounts of coal and stone dust. Long-term exposure to dust and crystalline silica may cause chronic respiratory disease. The article presents the results of tests on the dust levels in the area of a fully-powered longwall. The tests were conducted for five longwalls from different hard coal mines. In each of them, the average values of inhalable and respirable dust as well as the percentage content of free silica in the dust were determined in ten selected working positions. Additionally, for the longwall with the highest dust concentration, the levels of dust were determined for the basic activities related to the phases of the technological cycle. The comparative analysis conducted and the results obtained demonstrate large variations in the dust levels in the different areas. The permissible values were significantly exceeded in a number of cases. This poses a great threat to the health of Polish miners. The results obtained indicate that it is necessary to undertake more effective measures in order to improve the working environment of the crew in hard coal mines.


2012 ◽  
Vol 57 (3) ◽  
pp. 517-534 ◽  

Abstract The paper presents factors determining dust explosion hazards occurring in underground hard coal mines. The authors described the mechanism of transport and deposition of dust in mines entries and previous research on this topic. The paper presents a method of determination of depositing dust distribution during mining and presents the way to use it to assess coal dust explosion risk. The presented method of calculating the intensity of coal dust deposition is based on continuous monitoring of coal dust concentrations with use of optical sensors. Mathematical model of the distribution of the average coal dust concentration was created. Presented method allows to calculate the intensity of coal dust deposition in a continuous manner. Additionally, the authors presented the PŁ-2 stationary optical dust sampler, used in the study, connected to the monitoring system in the mine. The article features the results of studies conducted in the return air courses of the active longwalls, and the results of calculations of dust deposition intensity carried out with the use of the presented method.


Author(s):  
Ye. G. Polenok ◽  
S. A. Mun ◽  
L. A. Gordeeva ◽  
A. A. Glushkov ◽  
M. V. Kostyanko ◽  
...  

Introduction.Coal dust and coal fi ring products contain large amounts of carcinogenic chemicals (specifically benz[a]pyrene) that are different in influence on workers of coal mines and thermal power plants. Specific immune reactions to benz[a]pyrene therefore in these categories of workers can have specific features.Objective.To reveal features of antibodies specifi c to benz[a]pyrene formation in workers of coal mines and thermal power plants.Materials and methods.The study covered A and G class antibodies against benz[a]pyrene (IgA-Bp and IgG-Bp) in serum of 705 males: 213 donors of Kemerovo blood transfusion center (group 1, reference); 293 miners(group 2) and 199 thermal power plant workers (group 3). Benz[a]pyrene conjugate with bovine serum albumin as an adsorbed antigen was subjected to immune-enzyme assay.Results.IgA-Bp levels in the miners (Me = 2.7) did not differ from those in the reference group (Me = 2.9), but in the thermal power plant workers (Me = 3.7) were reliably higher than those in healthy men and in the miners (p<0.0001). Levels of IgG-Bp in the miners (Me = 5.0) appeared to be lower than those in the reference group (Me = 6.4; (p = 0.05). IgG-Bb level in the thermal power plantworkers (Me = 7.4) exceeded the parameters in the healthy donors and the miners (p<0.0001). Non-industrial factors (age and smoking) appeared tohave no influence on specific immune reactions against benz[a]pyrene in the miners and the thermal power plant workers.Conclusions.Specific immune reactions against benz[a]pyrene in the miners and the thermal power plant workers are characterized by peculiarities: the miners demonstrate lower levels of class A serum antibodies to benz[a]pyrene; the thermal power plant workers present increased serum levels of class G antibodies to benz[a]pyrene. These peculiarities result from only the occupational features, but do not depend on such factors as age, smoking and length of service at hazardous production. It is expedient to study specific immune reactions to benz[a]pyrene in workers of coal mines and thermal power plants, to evaluate individual oncologic risk and if malignancies occur.


2021 ◽  
Vol 69 ◽  
pp. 104374
Author(s):  
Qingxi Wei ◽  
Yansong Zhang ◽  
Kun Chen ◽  
Bo Liu ◽  
Xiangbao Meng ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4213
Author(s):  
Dariusz Fuksa

The subject of the article is a new method that I have developed for calculating a multi-asset break-even for multi-assortment production, extended by a percentage threshold and a current sales ratio (which was missing in previously published methods). The percentage threshold provides unambiguous information about the economic health of a company. As a result, it became possible to use it in practice to evaluate the activities of economic entities (mines) and to perform modelling and optimisation of production plans based on different variants of customer demand scenarios. The publication addresses the complexity of the problem of determining the break-even in multi-assortment production. Moreover, it discusses the practical limitations of previous methods and demonstrates the usefulness of the proposed method on the example of hard coal mines.


Sign in / Sign up

Export Citation Format

Share Document