scholarly journals Surfactant modified carbon nanotube paste electrode for the sensitive determination of mitoxantrone anticancer drug

Author(s):  
Jamballi G. Manjunatha

<p class="PaperAbstract"><span lang="EN-US">Surfactant modified carbon nanotube paste electrode is prepared as electrochemical sensor with high sensitivity in responding to Mitoxantrone (MTX). Electrochemical oxidation of MTX is investigated in buffered solution by cyclic voltammetry that is found very sensitive method for detection of MTX. It is shown that the sodium dodecyl sulfate modified carbon nanotube paste electrode (SDSMCNTPE) gives enhanced current response for MTX compared to the bare carbon nanotube paste electrode (BCNTPE). Different parameters were tested to optimize the conditions for MTX determination. The effects of different surfactant and surfactant concentration, pH, scan rate, detection limit (LOD), limit of quantification (LOQ) and concentration of MTX on the oxidation peak current values were determined. Excellent results were obtained by cyclic voltammetry using SDSMCNTPE, where two MTX oxidation peaks appeared at 367 and 596 mV </span><span lang="EN-US">vs.</span><span lang="EN-US"> SCE. Detailed analysis of the second voltammetric peak showed the linear dynamic range between 2×10<sup>−7</sup> and 7×10<sup>−6</sup> M MTX with the slope of co-relation coefficient of 0.99271. LOD and LOQ were determined as 3.5 ×10<sup>−8</sup> M and 11×10<sup>−8</sup> M, respectively. The SDSMCNTPE showed very good reproducibility, high stability in its voltammetric response, high electrochemical sensitivity and low detection limit for MTX.</span></p>

2019 ◽  
Vol 9 (1) ◽  
pp. 132-137 ◽  
Author(s):  
Nagarajappa Hareesha ◽  
Jamballi Gangadharappa Gowda Manjunatha ◽  
Chenthattil Raril ◽  
Girish Tigari

Purpose: The novel sodium dodecyl sulfate modified carbon nanotube paste electrode (SDS/CNTPE) was used as a sensitive sensor for the electrochemical investigation of L-tyrosine (TY).Methods: The electrochemical analysis of TY was displayed through cyclic voltammetry (CV)and differential pulse voltammetry (DPV). The surface morphology of SDS/CNTPE and barecarbon nanotube past electrode (BCNTPE) was reviewed trough field emission scanning electronmicroscopy (FESEM).Results: The functioning SDS/CNTPE shows a voltammetric response with superior sensitivitytowards TY. This study was conducted using a phosphate buffer solution having neutral pH(pH=7.0). The correlation between the oxidation peak current of TY and concentration of TYwas achieved linearly in CV method, in the range 2.0×10-6 to 5 ×10-5 M with the detection limit729 nM and limit of quantification 2.43 μM. The investigated voltammetric study at SDS/CNTPEwas also adopted in the examination of TY concentration in a pharmaceutical medicine as a realsample with the recovery of 97% to 98%.Conclusion: The modified electrode demonstrates optimum sensitivity, constancy, reproducibility,and repeatability during the electrocatalytic activity of TY.


2019 ◽  
Vol 10 (1) ◽  
pp. 29-40 ◽  
Author(s):  
Madikeri M. Charithra ◽  
Jamballi G. Manjunatha

New aspects associated with electro-catalytic activity of poly(methyl orange) modified carbon nanotube paste electrode (PMMCNTPE) towards the detection of paracetamol (PC) which is typically used worldwide as a pain reliever, were explored through implementation of cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. Bare carbon nanotube paste electrode (BCNTPE) was modified by methyl orange using the electro­polymerizing method. The effect of pH and influence of potential scan rate were resolved by means of CV technique. It was found that under optimized experimental conditions, PMMCNTPE imparts the analytical curve for PC in the concentration range of 2.0×10-6 – 5.0×10-5 M with detection limit of 3.8×10-8 M and limit of quantification of 1.2×10-8 M. The proposed sensor exhibited acceptable reproducibility, admirable stability, and adequate repeatability. The interference study of PC with dopamine (DA) and folic acid (FA) showed good selectivity of the designed sensor. The feasibility of the constructed electrochemical sensor to detect PC was successfully tested in some pharmaceutical formulations.


Author(s):  
Ebrahim Zarei ◽  
Mohammad Reza Jamali ◽  
Farideh Ahmadi

In this study, ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate was applied as additives to fabricate a novel ionic liquid/carbon nanotube paste electrode (IL/CNPE). This electrode was characterized by electrochemical impedance spectroscopy and cyclic voltammetry. Results showed that the electron transfer rate and reversibility of the electrode were increased by the ionic liquid. The morpho-logy of prepared IL/CNPE was studied by scanning electron microscopy. Nickel/ionic liquid modified carbon nanotube paste electrode (Ni/IL/CNPE) was also constructed by immersion of the IL/CNPE in nickel sulfate solution. Ionic liquid showed significant effect on the accumulation of nickel species on the surface of the electrode. Also, the values of electron transfer coefficient, charge-transfer rate constant and electrode surface coverage for Ni(II)/Ni(III) redox couple of the Ni/IL/CNPE were found to be 0.32 and 2.37×10-1 s-1 and 2.74×10-8 mol.cm-2, respectively. The Ni/IL/CNPE was applied successfully to highly efficient electrocatalytic oxidation of formaldehyde in alkaline medium. The effects of various factors on the efficiency of electrocatalytic oxidation of formaldehyde were optimized. Under the optimized condition, cyclic voltammetry of formaldehyde at the modified electrode exhibited two linear dynamic ranges in the concentration ranges of 7.00×10-6 to 9.60×10-5 mol.L-1 and 9.60×10-5 to 32.00×10-3 mol.L-1 with excellent detection limit of 9.50×10-7 mol.L-1 (3σ/slope), respectively. Also, the method was successfully applied for formaldehyde measurement in real sample. Copyright © 2018 BCREC Group. All rights reservedReceived: 11st March 2018; Revised:20th July 2018; Accepted: 28th July 2018How to Cite: Zarei, E., Jamali, M.R., Ahmadi, F. (2018). Highly Sensitive Electrocatalytic Determination of Formaldehyde Using a Ni/Ionic Liquid Modified Carbon Nanotube Paste Electrode. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (3): 529-542 (doi:10.9767/bcrec.13.3.2341.529-542)Permalink/DOI: https://doi.org/10.9767/bcrec.13.3.2341.529-542 


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Fathali Gholami-Orimi ◽  
Farshad Taleshi ◽  
Pourya Biparva ◽  
Hassan Karimi-Maleh ◽  
Hadi Beitollahi ◽  
...  

We propose chlorpromazine (CHP) as a new mediator for the rapid, sensitive, and highly selective voltammetric determination of homocysteine (Hcy) using multiwall carbon nanotube paste electrode (MWCNTPE). The experimental results showed that the carbon nanotube paste electrode has a highly electrocatalytic activity for the oxidation of Hcy in the presence of CHP as a mediator. Cyclic voltammetry, double potential step chronoamperometry, and square wave voltammetry (SWV) are used to investigate the suitability of CHP at the surface of MWCNTPE as a mediator for the electrocatalytic oxidation of Hcy in aqueous solutions. The kinetic parameters of the system, including electron transfer coefficient, and catalytic rate constant were also determined using the electrochemical approaches. In addition, SWV was used for quantitative analysis. SWV showed wide linear dynamic range (0.1–210.0 μM Hcy) with a detection limit of 0.08 μM Hcy. Finally, this method was also examined as a selective, simple, and precise electrochemical sensor for the determination of Hcy in real samples.


2010 ◽  
Vol 83 (11) ◽  
pp. 1364-1366 ◽  
Author(s):  
Camila Bitencourt Mendes ◽  
Felipe Nascimento Andrade ◽  
Mariana Gava Segatelli ◽  
Arnaldo César Pereira ◽  
Douglas Cardoso Dragunski ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1019
Author(s):  
Teresa von Linde ◽  
Gzona Bajraktari-Sylejmani ◽  
Walter E. Haefeli ◽  
Jürgen Burhenne ◽  
Johanna Weiss ◽  
...  

The peptide transporter PEPT-1 (SLC15A1) plays a major role in nutritional supply with amino acids by mediating the intestinal influx of dipeptides and tripeptides generated during food digestion. Its role in the uptake of small bioactive peptides and various therapeutics makes it an important target for the investigation of the systemic absorption of small peptide-like active compounds and prodrug strategies of poorly absorbed therapeutics. The dipeptide glycyl-sarcosine (Gly-Sar), which comprises an N-methylated peptide bond that increases stability against enzymatic degradation, is widely utilized for studying PEPT-1-mediated transport. To support experiments on PEPT-1 inhibitor screening to identify potential substrates, we developed a highly sensitive Gly-Sar quantification assay for Caco-2 cell lysates with a dynamic range of 0.1 to 1000 ng/mL (lower limit of quantification 0.68 nM) in 50 µL of cell lysate. The assay was validated following the applicable recommendations for bioanalytic method validation of the FDA and EMA. Sample preparation and quantification were established in 96-well cell culture plates that were also used for the cellular uptake studies, resulting in a rapid and robust screening assay for PEPT-1 inhibitors. This sample preparation principle, combined with the high sensitivity of the UPLC-MS/MS quantification, is suitable for screening assays for PEPT-1 inhibitors and substrates in high-throughput formats and holds the potential for automation. Applicability was demonstrated by IC50 determinations of the known PEPT-1 inhibitor losartan, the known substrates glycyl-proline (Gly-Pro), and valaciclovir, the prodrug of aciclovir, which itself is no substrate of PEPT-1 and consequently showed no inhibition in our assay.


2021 ◽  
Vol 11 (6) ◽  
pp. 14661-14672

A poly(riboflavin) modified carbon nanotube paste electrode (PRFMCNTPE) is employed as a compatible and electrocatalytic sensor for the determination of Tyrosine (TYR). The analysis and assessment are carried out through differential pulse voltammetry (DPV) and Cyclic Voltammetry (CV). The surface of the intended sensor is examined through Field Emission Scanning Electron Microscopy (FE-SEM). The modified electrode shows the outstanding electrocatalytic effect for TYR with high selectivity and sensitivity as compared to carbon nanotube paste electrode (CNTPE). The electro-oxidation peak current of TYR and its concentration is found linear from 2 µM to 10 µM with a detection limit (LOD) of 0.45 µM. The developed sensor is productively applied for the determination of TYR in pharmaceutical samples like Tyrosine capsules. The adapted electrode shows good stability, excellent reproducibility, and remarkable sensitivity.


Sign in / Sign up

Export Citation Format

Share Document