APPLICATION OF AIRBORNE LASER SCANNING IN MONITORING OF SECONDARY INFLUENCES CAUSED BY UNDERGROUND MINING EXPLOITATION

Author(s):  
Kamila Kuzia

This article presents a method of use of measurements based on airborne laser scanning to monitoring secondary influences caused by underground exploitation of coal deposits. The issue of secondary influences is still current topic in underground mining, especially in areas with a long mining history. The article presents, on the example of mining exploitation in the city of Bytom, the method of acquiring and processing data from the measurement of airborne laser scanning and interpretation of the obtained results.

2018 ◽  
Vol 36 ◽  
pp. 02002 ◽  
Author(s):  
Agnieszka Gontaszewska-Piekarz ◽  
Maria Mrówczyńska

The paper presents the possibilities of using data obtained by airborne laser scanning for identifying areas where lignite used to be mined. The technology of airborne laser scanning presented in the paper as and its results have a vast potential in terms of identifying local terrain deformations. The paper also presents the history of lignite mining in the region of Ośno Lubuskie (the north-west of Ziemia Lubuska - western Poland). It describes underground mining in complicated geological conditions (glaciotectonic deformations). The paper is supplemented with historical maps showing the locations of the mines


2011 ◽  
Vol 5 (3) ◽  
pp. 196-208 ◽  
Author(s):  
D. F. Laefer ◽  
T. Hinks ◽  
H. Carr ◽  
L. Truong-Hong

2021 ◽  
Vol 13 (4) ◽  
pp. 1917
Author(s):  
Alma Elizabeth Thuestad ◽  
Ole Risbøl ◽  
Jan Ingolf Kleppe ◽  
Stine Barlindhaug ◽  
Elin Rose Myrvoll

What can remote sensing contribute to archaeological surveying in subarctic and arctic landscapes? The pros and cons of remote sensing data vary as do areas of utilization and methodological approaches. We assessed the applicability of remote sensing for archaeological surveying of northern landscapes using airborne laser scanning (LiDAR) and satellite and aerial images to map archaeological features as a basis for (a) assessing the pros and cons of the different approaches and (b) assessing the potential detection rate of remote sensing. Interpretation of images and a LiDAR-based bare-earth digital terrain model (DTM) was based on visual analyses aided by processing and visualizing techniques. 368 features were identified in the aerial images, 437 in the satellite images and 1186 in the DTM. LiDAR yielded the better result, especially for hunting pits. Image data proved suitable for dwellings and settlement sites. Feature characteristics proved a key factor for detectability, both in LiDAR and image data. This study has shown that LiDAR and remote sensing image data are highly applicable for archaeological surveying in northern landscapes. It showed that a multi-sensor approach contributes to high detection rates. Our results have improved the inventory of archaeological sites in a non-destructive and minimally invasive manner.


2021 ◽  
Vol 491 ◽  
pp. 119225
Author(s):  
Einari Heinaro ◽  
Topi Tanhuanpää ◽  
Tuomas Yrttimaa ◽  
Markus Holopainen ◽  
Mikko Vastaranta

Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1864
Author(s):  
Peter Mewis

The effect of vegetation in hydraulic computations can be significant. This effect is important for flood computations. Today, the necessary terrain information for flood computations is obtained by airborne laser scanning techniques. The quality and density of the airborne laser scanning information allows for more extensive use of these data in flow computations. In this paper, known methods are improved and combined into a new simple and objective procedure to estimate the hydraulic resistance of vegetation on the flow in the field. State-of-the-art airborne laser scanner information is explored to estimate the vegetation density. The laser scanning information provides the base for the calculation of the vegetation density parameter ωp using the Beer–Lambert law. In a second step, the vegetation density is employed in a flow model to appropriately account for vegetation resistance. The use of this vegetation parameter is superior to the common method of accounting for the vegetation resistance in the bed resistance parameter for bed roughness. The proposed procedure utilizes newly available information and is demonstrated in an example. The obtained values fit very well with the values obtained in the literature. Moreover, the obtained information is very detailed. In the results, the effect of vegetation is estimated objectively without the assignment of typical values. Moreover, a more structured flow field is computed with the flood around denser vegetation, such as groups of bushes. A further thorough study based on observed flow resistance is needed.


Author(s):  
Jorgen Wallerman ◽  
Kenneth Nystrom ◽  
Mats Nilsson ◽  
Peder Axensten ◽  
Mikael Egberth ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document