Influence of pH and Cellic® CTec2 enzymes dose on the glucose yield after enzymatic hydrolysis of cellulose at 50 °C

2021 ◽  
Vol 114 ◽  
pp. 53-58
Author(s):  
Monika Marchwicka

Influence of pH and Cellic® CTec2 enzymes dose on the glucose yield after enzymatic hydrolysis of cellulose at 50 °C. Cellulose obtained by the Kürschner-Hoffer method from the wood of 3-year-old poplar (Populus trichocarpa) was subjected to enzymatic hydrolysis. Cellic® CTec2 enzymes (Novozymes, Denmark) were used. The enzymatic hydrolysis was tested within the conditions recommended by the manufacturer and the literature. The process was carried out at 50 °C at various pH – 4.8, 5.0, 5.5 and enzymes doses - 25, 50 and 100 mg per 100 mg of the dry mass of cellulose. The process was ended after 24 h. The hydrolysates were analysed by high-performance liquid chromatography (HPLC) to determine the glucose content, and then the highest glucose yield. The highest glucose yield was obtained for pH 4.8 and 100 mg of enzymes per 100 mg of the dry mass of cellulose – 72 %.

2020 ◽  
Vol 112 ◽  
pp. 85-91
Author(s):  
Monika Marchwicka

Influence of pH and Cellic® CTec2 enzymes dose on the glucose yield after enzymatic hydrolysis of cellulose at 45 °C. The enzymatic hydrolysis with the use of industrial enzymes Cellic® CTec2 (Novozymes, Denmark) was carried out within the conditions recommended by the manufacturer and literature. Cellulose obtained by the Kürschner-Hoffer method from a wood of 3-year-old poplar (Populus trichocarpa) was used for the study. Three pH values of 4.8, 5.0 and 5.5 were applied. Also, three amounts of enzymes were used: 25, 50 and 100 mg per 100 mg of the dry mass of cellulose for each pH used. The temperature was 45 °C. Samples were taken after 24 h and subjected to chromatographic analysis to determine the glucose content in the hydrolysates, and then the process parameters allowing for the highest glucose yield after the enzymatic hydrolysis process. The highest glucose yield was obtained for pH 5.0 and 100 mg of enzymes per 100 mg of the dry mass of cellulose – 79 %.


2020 ◽  
Vol 110 ◽  
pp. 92-96
Author(s):  
Monika Marchwicka ◽  
Anna Lesiak ◽  
Andrzej Radomski

Effect of selected urea and formaldehyde concentrations on glucose yield of enzymatic hydrolysis of cellulose was investigated. Urea and formaldehyde were added separately at the concentrations of 0.001, 0.002 and 0.005 g/cm3. Glucose was determined by high-performance liquid chromatography (HPLC). It was found that the used concentrations of urea didn’t influence glucose yield. In the case of formaldehyde, the results vary between used concentrations. The glucose yield of enzymatic hydrolysis of cellulose with the highest investigated concentration of formaldehyde (0.005 g/cm3) decreased by 50 %.


2019 ◽  
Vol 15 (3) ◽  
pp. 296-303 ◽  
Author(s):  
Swapnil Gaikwad ◽  
Avinash P. Ingle ◽  
Silvio Silverio da Silva ◽  
Mahendra Rai

Background: Enzymatic hydrolysis of cellulose is an expensive approach due to the high cost of an enzyme involved in the process. The goal of the current study was to apply magnetic nanomaterials as a support for immobilization of enzyme, which helps in the repeated use of immobilized enzyme for hydrolysis to make the process cost-effective. In addition, it will also provide stability to enzyme and increase its catalytic activity. Objective: The main aim of the present study is to immobilize cellulase enzyme on Magnetic Nanoparticles (MNPs) in order to enable the enzyme to be re-used for clean sugar production from cellulose. Methods: MNPs were synthesized using chemical precipitation methods and characterized by different techniques. Further, cellulase enzyme was immobilized on MNPs and efficacy of free and immobilized cellulase for hydrolysis of cellulose was evaluated. Results: Enzymatic hydrolysis of cellulose by immobilized enzyme showed enhanced catalytic activity after 48 hours compared to free enzyme. In first cycle of hydrolysis, immobilized enzyme hydrolyzed the cellulose and produced 19.5 ± 0.15 gm/L of glucose after 48 hours. On the contrary, free enzyme produced only 13.7 ± 0.25 gm/L of glucose in 48 hours. Immobilized enzyme maintained its stability and produced 6.15 ± 0.15 and 3.03 ± 0.25 gm/L of glucose in second and third cycle, respectively after 48 hours. Conclusion: This study will be very useful for sugar production because of enzyme binding efficiency and admirable reusability of immobilized enzyme, which leads to the significant increase in production of sugar from cellulosic materials.


2013 ◽  
Vol 85 (17) ◽  
pp. 8121-8126 ◽  
Author(s):  
Britta Opitz ◽  
Andreas Prediger ◽  
Christian Lüder ◽  
Marrit Eckstein ◽  
Lutz Hilterhaus ◽  
...  

2015 ◽  
Vol 51 (52) ◽  
pp. 10502-10505 ◽  
Author(s):  
Aiping Chang ◽  
Qingshi Wu ◽  
Wenting Xu ◽  
Jianda Xie ◽  
Weitai Wu

The physical trapping of cellulose in microgels leads to a low-ordered cellulose, favoring enzymatic hydrolysis of cellulose to generate glucose.


1977 ◽  
Vol 23 (2) ◽  
pp. 139-147 ◽  
Author(s):  
D. Sternberg ◽  
P. Vuayakumar ◽  
E. T. Reese

The enzymatic conversion of cellulose is catalyzed by a multiple enzyme system. The Trichoderma enzyme system has been studied extensively and has insufficient β-glucosidase (EC 3.2.1.21) activity for the practical saccharification of cellulose. The black aspergilli (A. niger and A. phoenicis) were superior producers of β-glucosidase and a method for production of this enzyme in liquid culture is presented. When Trichoderma cellulase preparations are supplemented with β-glucosidase from Aspergillus during practical saccharifications, glucose is the predominant product and the rate of saccharification is significantly increased. The stimulatory effect of β-glucosidase appears to be due to the removal of inhibitory levels of cellobiose.


Sign in / Sign up

Export Citation Format

Share Document