NON-STANDARD METHODS OF DATA PROCESSING IN THERMOGRAPHIC NON-DESTRUCTIVE TESTING OF LIGHT BALLISTIC PROTECTIONS

2015 ◽  
Vol 19 (1) ◽  
pp. 431-440 ◽  
Author(s):  
Waldemar Świderski ◽  
Marek Szudrowicz
2005 ◽  
Vol 6-8 ◽  
pp. 681-688
Author(s):  
B. Spellenberg ◽  
J. Zettner ◽  
T. Hierl ◽  
M. Haller ◽  
T. Lenzi

Recent developments in infrared camera technology, testing methods and data processing algorithms have brought significant progress for high resolution spatial and temporal analysis of thermal radiation. Together with industry standard automation technology and specific infrared image data processing it became possible to non destructively inspect laser welded seams and other types of joints using heat flux analysis subsequent to thermal stimulation. High thermal diffusion coefficients of the usually metallic samples under test make the availability of high-speed infrared cameras as a key hardware component indispensable. Since high-speed infrared cameras with frame rates of at least 500 Hz have become available for commercial applications, non-destructive testing systems with a new class of performance were designed, manufactured, and implemented at industrial sites. Heat flux analysis as a new and robust method of non-destructive testing has been implemented for various types of equipment, ranging from off-line tools for laboratory use to automated robot based systems enabling fast and operator-free in-line inspection. Depending on environment, implementation surroundings, and geometry of objects to be inspected, different types of pulsed or continuous operating heat sources (e.g. flash light, laser, … ) are selected. Due to its outstanding industrial relevance non-destructive testing of laser welded seams in automobile manufacturing is shown in detail in this paper.


Author(s):  
Anatoliy Cherepanov

The issues of assessing the volume and efficiency of non–destructive testing in order to improve the quality and completeness of information for determining the degradation processes that cause the destruction of technical devices, for automating data processing, for determining time, labor and cost, taking into account the volume, efficiency and labor intensity.


2013 ◽  
Vol 64 (2) ◽  
pp. 21001 ◽  
Author(s):  
Jean-Luc Bodnar ◽  
Jean-Jacques Metayer ◽  
Kamel Mouhoubi ◽  
Vincent Detalle

2020 ◽  
pp. 54-59
Author(s):  
A. A. Yelizarov ◽  
A. A. Skuridin ◽  
E. A. Zakirova

A computer model and the results of a numerical experiment for a sensitive element on a planar mushroom-shaped metamaterial with cells of the “Maltese cross” type are presented. The proposed electrodynamic structure is shown to be applicable for nondestructive testing of geometric and electrophysical parameters of technological media, as well as searching for inhomogeneities in them. Resonant frequency shift and change of the attenuation coefficient value of the structure serve as informative parameters.


Sign in / Sign up

Export Citation Format

Share Document