scholarly journals Ground Motion Evaluation at Landslide Site in Proximity of Aso Bridge for the Main Shock of the 2011 Kumamoto Earthquake

2017 ◽  
Vol 17 (5) ◽  
pp. 5_133-5_138
Author(s):  
Yoshiya HATA ◽  
Koji ICHII
2017 ◽  
Vol 17 (2) ◽  
pp. 2_191-2_195
Author(s):  
Yoshiya HATA ◽  
Masaaki YABE ◽  
Akira KASAI ◽  
Yoshikazu TAKAHASHI ◽  
Hiroshi MATSUZAKI ◽  
...  

2019 ◽  
Vol 218 (2) ◽  
pp. 755-761
Author(s):  
Wataru Yamada ◽  
Kazuya Ishitsuka ◽  
Toru Mogi ◽  
Mitsuru Utsugi

SUMMARY The 2016 Kumamoto earthquake involved a series of events culminating in an Mw 7.0 main shock on 2016 April 16; the main-shock fault terminated in the caldera of Aso volcano. In this study, we estimated surface displacements after the 2016 Kumamoto earthquake using synthetic aperture radar interferometry analysis of 16 Phased Array Type L-band Synthetic Aperture Radar-2 images acquired from 2016 April 18 to 2017 June 12 and compared them with four images acquired before the earthquake. Ground subsidence of about 8 cm was observed within about a 3 km radius in the northwestern part of Aso caldera. Because this displacement was not seen in data acquired before the 2016 Kumamoto earthquake, we attribute this displacement to the 2016 Kumamoto earthquake. Furthermore, to estimate the source depth of the surface displacement, we applied the Markov chain Monte Carlo method to a spherical source model and obtained a source depth of about 4.8 km. This depth and position are nearly in agreement with the top of a low-resistivity area previously inferred from magnetotelluric data; this area is thought to represent a deep hydrothermal reservoir. We concluded that this displacement is due to the migration of magma or aqueous fluids.


2018 ◽  
Author(s):  
Sebastian von Specht ◽  
Ugur Ozturk ◽  
Georg Veh ◽  
Fabrice Cotton ◽  
Oliver Korup

Abstract. The propagation of a seismic rupture on a fault introduces spatial variations in the seismic wavefield surrounding the fault during an earthquake. This directivity effect results in larger shaking amplitudes in the rupture propagation direction. Its seismic radiation pattern also causes amplitude variations between the strike-normal and strike-parallel components of horizontal ground motion. We investigated the landslide response to these effects during the 2016 Kumamoto earthquake (MW 7.1) in central Kyūshū (Japan). Although the distribution of some 1,500 earthquake-triggered landslides as function of rupture distance is consistent with the observed Arias intensity, the landslides are more concentrated to the northeast of the southwest-northeast striking rupture. We examined several landslide susceptibility factors: hillslope inclination, median amplification factor (MAF) of ground shaking, lithology, land cover, and topographic wetness. None of these factors can sufficiently explain the landslide distribution or orientation (aspect), although the landslide headscarps coincide with elevated hillslope inclination and MAF. We propose a new physics-based ground motion model that accounts for the seismic rupture effects, and demonstrate that the low-frequency seismic radiation pattern consistent with the overall landslide distribution. The spatial landslide distribution is primarily influenced by the rupture directivity effect, whereas landslide aspect is influenced by amplitude variations between the fault-normal and fault-parallel motion at frequencies


Sign in / Sign up

Export Citation Format

Share Document