scholarly journals Novel Design of a Vertical Axis Hydrokinetic Turbine –Straight-Blade Cascaded (VAHT–SBC): Experimental and Numerical Simulation

Author(s):  
Ridho Hantoro ◽  
Erna Septyaningrum
2021 ◽  
Vol 53 (1) ◽  
pp. 210102
Author(s):  
Ridho Hantoro ◽  
Sarwono Sarwono ◽  
Fernando Parsaulian Panjaitan ◽  
Erna Septyaningrum ◽  
Nuril Hidayati

2015 ◽  
Vol 57 ◽  
pp. 144-158 ◽  
Author(s):  
K.M. Almohammadi ◽  
D.B. Ingham ◽  
L. Ma ◽  
M. Pourkashanian

Author(s):  
Jinwook Kim ◽  
Dohyung Lee ◽  
Junhee Han ◽  
Sangwoo Kim

The Vertical Axis Wind Turbine (VAWT) has advantages over Horizontal Axis Wind Turbine (HAWT) that it allows less chance to be degraded independent of wind direction and turbine can be operated even at the low wind speed. The objective of this study is to analyze aerodynamics of the VAWT airfoil and investigate the ideal shape of airfoil, more specifically cambers. The analysis of aerodynamic characteristics with various cambers has been performed using numerical simulation with CFD software. As the numerical simulation discloses local physical features around wind turbine, aerodynamic performance such as lift, drag and torque are computed for single airfoil rotation and multiple airfoil rotation cases. Through this study more effective airfoil shape is suggested based vortex-airfoil interaction studies.


2020 ◽  
Vol 38 ◽  
pp. 215-221
Author(s):  
Anna Kuwana ◽  
Xue Yan Bai ◽  
Dan Yao ◽  
Haruo Kobayashi

There are many types of wind turbine. Large propeller-type wind turbines are used mainly for large wind farms and offshore wind power generation. Small vertical-axis wind turbines (VAWTs) are often used in distributed energy systems. In previous studies on wind turbines, the basic characteristics such as torque coefficient have often been obtained during rotation, with the turbine rotating at a constant speed. Such studies are necessary for the proper design of wind turbines. However, it is also necessary to conduct research under conditions in which the wind direction and wind speed change over time. Numerical simulation of the starting characteristics is carried out in this study. Based on the flow field around the wind turbine, the force required to rotate the turbine is calculated. The force used to stop the turbine is modeled based on friction in relation to the bearing. Equations for the motion of the turbine are solved by their use as external force. Wind turbine operation from the stationary state to the start of rotation is simulated. Five parameters, namely, blade length, wind turbine radius, overlap, gap, and blade thickness, are changed and the optimum shape is obtained. The simulation results tend to qualitatively agree with the experimental results for steadily rotating wind turbines in terms of two aspects: (1) the optimal shape has an 20% overlap of the turbine radius, and (2) the larger the gap, the lower the efficiency.


Sign in / Sign up

Export Citation Format

Share Document