scholarly journals Effect of the amount of battery charge on tube voltage in different hand-held dental x-ray systems

2012 ◽  
Vol 42 (1) ◽  
pp. 1 ◽  
Author(s):  
Eun-Kyung Kim
Keyword(s):  
X Ray ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andreas P. Sauter ◽  
Jana Andrejewski ◽  
Manuela Frank ◽  
Konstantin Willer ◽  
Julia Herzen ◽  
...  

AbstractGrating-based X-ray dark-field imaging is a novel imaging modality with enormous technical progress during the last years. It enables the detection of microstructure impairment as in the healthy lung a strong dark-field signal is present due to the high number of air-tissue interfaces. Using the experience from setups for animal imaging, first studies with a human cadaver could be performed recently. Subsequently, the first dark-field scanner for in-vivo chest imaging of humans was developed. In the current study, the optimal tube voltage for dark-field radiography of the thorax in this setup was examined using an anthropomorphic chest phantom. Tube voltages of 50–125 kVp were used while maintaining a constant dose-area-product. The resulting dark-field and attenuation radiographs were evaluated in a reader study as well as objectively in terms of contrast-to-noise ratio and signal strength. We found that the optimum tube voltage for dark-field imaging is 70 kVp as here the most favorable combination of image quality, signal strength, and sharpness is present. At this voltage, a high image quality was perceived in the reader study also for attenuation radiographs, which should be sufficient for routine imaging. The results of this study are fundamental for upcoming patient studies with living humans.


2021 ◽  
pp. 56-59
Author(s):  
Irina M. Lebedenko ◽  
Sergej S. Khromov ◽  
Taras V. Bondarenko ◽  
Evgenij M. Chertenkov

Considered the issues of X-ray dose control during diagnostic and therapeutic procedures using imaging tools. The dose of X-ray radiation from the visualization devices absorbed by the biological tissue of a person was determined when monitoring the position of the patient on the therapeutic table of the electron accelerator before the radiation therapy session. The processes of transmission of photons and electrons through the medium were simulated, and the X-ray spectra were measured. The emission spectrum of the Varian G-242 Rotating Anode X-ray Tube was obtained using an XR-100-CdTe spectrometer. The absorbed dose is calculated by the Monte Carlo method. The absorbed dose in the water phantom at tube voltage up to 80 kV was 0,9–1,5 mGy.


1996 ◽  
Vol 44 (6) ◽  
pp. 178-186 ◽  
Author(s):  
H. Arimura ◽  
T. Okatoa ◽  
T. lkari ◽  
M. Okamoto ◽  
H. Kubota ◽  
...  

2011 ◽  
Vol 236-238 ◽  
pp. 868-871 ◽  
Author(s):  
Meng Liang Tong ◽  
Xuan Yan Liu

Calcium zincate as an active material in Zn/Ni secondary battery has been successfully synthesized by microwave method. The chemical composition of Ca(OH)2·2Zn(OH)2·2H2O was confirmed by X-ray powder diffraction pattern and weight loss in thermogravimetric analysis.The results of cyclic voltammetry and experimental Zn/Ni battery charge–discharge test showed that the material of calcium zincate had excellent electrochemical performances: a high discharging platform of 1.685 V and a good cycleability, discharge capacity would be 70.0% of initial capacity after circulated 120 times.


1964 ◽  
Vol 20 (3) ◽  
pp. 213-218
Author(s):  
IKKAKU DOINOBU ◽  
TADASHIGE MIYAGAWA ◽  
YOSHIO ISHIMI ◽  
SATSUKI NAKAGAKI ◽  
HARUMI SAITO ◽  
...  
Keyword(s):  

2016 ◽  
Vol 2016 (1) ◽  
pp. 000660-000665
Author(s):  
Anju Sharma ◽  
Preeth Sivakumar ◽  
Andrew Feigel ◽  
In Tae Bae ◽  
Lawrence P. Lehman ◽  
...  

Abstract In this paper, we present a detailed study on the effects of x-ray exposure on data corruption in commercially available NOR and NAND flash memory devices during x-ray inspection with a high-resolution Phoenix Nanomex system from GE. We investigated role of the x-ray tube voltage, tube current, device orientation, x-ray filters and photon energy. We explored the low exposure regime in detail when the first byte errors start occurring and also determined the absorbed dose for 100% byte errors. No data corruption was observed after the normal 2D x-ray inspection and CT scans of the NOR and NAND flash memory devices under study. However, increase in the tube voltage, tube current and/or the x-ray beam size resulted in byte errors which increased exponentially with the exposure time. The byte error rate was found to be much more sensitive to the tube voltage than the tube current. It was also affected by the device orientation with respect to the x-ray beam. The NAND flash memories were found to be more susceptible to data corruption from x-ray exposure than the NOR devices examined in this work. Some NOR devices were irradiated with the monochromatic x-rays from the CHESS synchrotron facility at Cornell University. Of all the photon energies used in this study, 12 keV x-ray irradiation resulted in the highest byte error rate. In this paper, we thus present a direct proof that it is the low-energy photon absorption that plays a major role in introducing bit errors in flash memories. Commonly available low-energy x-ray filters such as Cu and Al foils were found to be effective in preventing data corruption in such devices for long exposure time. Use of lower tube voltage, lower tube current, smaller x-ray spot size, short exposure time and low-energy x-ray filters, is recommended to prevent data corruption during 2D and 3D x-ray inspection of flash memory devices and other semiconductor devices in general.


Sign in / Sign up

Export Citation Format

Share Document