Cluster-based Energy-aware Data Sharing Scheme to Support a Mobile Sink in Solar-Powered Wireless Sensor Networks

2015 ◽  
Vol 42 (11) ◽  
pp. 1430-1440
Author(s):  
Hong Seob Lee ◽  
Jun Min Yi ◽  
Jaeung Kim ◽  
Dong Kun Noh
Sensors ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 114 ◽  
Author(s):  
Dong Chen ◽  
Wei Lu ◽  
Weiwei Xing ◽  
Na Wang

With the wide application of wireless sensor networks (WSNs), secure data sharing in networks is becoming a hot research topic and attracting more and more attention. A huge challenge is securely transmitting the data from the source node to the sink node. Except for eavesdropping the information stored in the packages, the adversary may also attempt to analyze the contextual information of the network to locate the source node. In this paper, we proposed a secure data sharing approach to defend against the adversary. Specifically, we first design a secret key mechanism to guarantee the security of package delivery between a pair of nodes. Then, a light-weighted secret sharing scheme is designed to map the original message to a set of shares. Finally, the shares are delivered to the sink node independently based on a proper random routing algorithm. Simulation results illustrate that our approach can defend against the eavesdropping and tracing-back attack in an energy-efficient manner.


2007 ◽  
Vol 43 (4) ◽  
pp. 1539-1551 ◽  
Author(s):  
Nen-Chung Wang ◽  
Yung-Fa Huang ◽  
Jong-Shin Chen ◽  
Po-Chi Yeh

Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 272 ◽  
Author(s):  
Minjae Kang ◽  
Ikjune Yoon ◽  
Dong Noh

By utilizing mobile sinks in wireless sensor networks (WSNs), WSNs can be deployed in more challenging environments that cannot connect with the Internet, such as those that are isolated or dangerous, and can also achieve a balanced energy consumption among sensors which leads to prolonging the network lifetime. However, an additional overhead is required to check the current location of the sink in order for a node to transmit data to the mobile sink, and the size of the overhead is proportional to that of the network. Meanwhile, WSNs composed of solar-powered nodes have recently been actively studied for the perpetual operation of a network. This study addresses both of these research topics simultaneously, and proposes a method to support an efficient location service for a mobile sink utilizing the surplus energy of a solar-powered WSN. In this scheme, nodes that have a sufficient energy budget can constitute rings, and the nodes belonging to these rings (which are called ring nodes) maintain up-to-date location information on the mobile sink node and serve this information to the other sensor nodes. Because each ring node only uses surplus energy to serve location information, this does not affect the performance of a node’s general operations (e.g., sensing, processing, and data delivery). Moreover, because multiple rings can exist simultaneously in the proposed scheme, the overhead for acquiring the position information of the sink can be significantly reduced, and also hardly increases even if the network size becomes larger.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3668 ◽  
Author(s):  
Youngjae Son ◽  
Minjae Kang ◽  
Younghyun Kim ◽  
Ikjune Yoon ◽  
Dong Kun Noh

In solar-powered wireless sensor networks (SP-WSNs), sensor nodes can continuously harvest energy to relieve the energy constraint problem in battery-powered WSNs. With the advent of wireless power transmission (WPT) technology, the nodes can be charged remotely if the energy harvested is insufficient. However, even in SP-WSNs with WPT, an energy imbalance problem is observed, in which the energy consumption of the nodes around a sink node increases abnormally if the sink node is stationary. To solve this problem, recent studies have been conducted using a mobile sink node instead of a stationary one. Generally, a clustering scheme is used for the efficient utilization of a mobile sink. However, even in the case of mobile sinks, it is still necessary to minimize the energy burden of the cluster heads and their surrounding nodes. In this study, we propose a scheme that mitigates the energy imbalance problem of SP-WSNs by using a WPT-capable mobile sink and an efficient clustering scheme. In the proposed scheme, the energy imbalance is minimized by electing the cluster heads effectively after considering the energy state of the nodes, and by enabling the sink node to charge the energy of the cluster heads while collecting data from them. Consequently, this scheme allows the sink node to collect more data with fewer blackouts of the sensor nodes.


2018 ◽  
Vol 18 (2) ◽  
pp. 890-901 ◽  
Author(s):  
Weimin Wen ◽  
Shenghui Zhao ◽  
Cuijuan Shang ◽  
Chih-Yung Chang

Sign in / Sign up

Export Citation Format

Share Document