scholarly journals Storm-time magnetospheric currents inferred from mid-latitude geomagnetic field variations.

1990 ◽  
Vol 42 (11) ◽  
pp. 1249-1265 ◽  
Author(s):  
Toshihiko IYEMORI
2015 ◽  
Vol 58 (5) ◽  
Author(s):  
Paola De Michelis ◽  
Giuseppe Consolini

<p style="-qt-block-indent: 0; text-indent: 0px; margin: 0px;">The aim of this work is to investigate the nature of the daily magnetic field perturbations produced by ionospheric and magnetospheric currents at high latitudes. We analyse the hourly means of the X and Y geomagnetic field components recorded by a meridian chain of permanent geomagnetic observatories in the polar region of the Northern Hemisphere during a period of four years (1995-1998) around the solar minimum. We apply a mathematical method, known as natural orthogonal component (NOC), which is capable of characterizing the dominant modes of the geomagnetic field daily variability through a set of empirical orthogonal functions (EOFs). Using the first two modes we reconstruct a two-dimensional equivalent current representation of the ionospheric electric currents, which contribute substantially to the geomagnetic daily variations. The obtained current structures resemble the equivalent current patterns of DP2 and DP1. We characterize these currents by studying their evolution with the geomagnetic activity level and by analysing their dependence on the interplanetary magnetic field. The obtained results support the idea of a coexistence of two main processes during all analysed period although one of them, the directly driven process, represents the dominant component of the geomagnetic daily variation.</p>


2009 ◽  
Vol 27 (6) ◽  
pp. 2483-2490 ◽  
Author(s):  
P. De Michelis ◽  
R. Tozzi ◽  
A. Meloni

Abstract. The target of this work is to investigate the nature of magnetic perturbations produced by ionospheric and magnetospheric currents as recorded at high-latitude geomagnetic stations. In particular, we investigate the effects of these currents on geomagnetic data recorded in Antarctica. To this purpose we apply a mathematical method, known as Natural Orthogonal Composition, to analyze the magnetic field disturbances along the three geomagnetic field components (X, Y and Z) recorded at Mario Zucchelli Station (IAGA code TNB; geographic coordinates: 74.7° S, 164.1° E) from 1995 to 1998. Using this type of analysis, we characterize the dominant modes of the geomagnetic field daily variability through a set of empirical orthogonal functions (EOFs). While such mathematically independent EOFs do not necessarily represent physically independent modes of variability, we find that some of them are actually related to well known current patterns located at high latitudes.


2006 ◽  
Vol 12 (1) ◽  
pp. 64-69
Author(s):  
O.I. Maksimenko ◽  
◽  
L.N. Yaremenko ◽  
O.Ya. Shenderovskaya ◽  
G.V. Melnyk ◽  
...  

2016 ◽  
Vol 12 (2) ◽  
pp. 4255-4259
Author(s):  
Michael A Persinger ◽  
David A Vares ◽  
Paula L Corradini

                The human brain was assumed to be an elliptical electric dipole. Repeated quantitative electroencephalographic measurements over several weeks were completed for a single subject who sat in either a magnetic eastward or magnetic southward direction. The predicted potential difference equivalence for the torque while facing perpendicular (west-to-east) to the northward component of the geomagnetic field (relative to facing south) was 4 μV. The actual measurement was 10 μV. The oscillation frequency around the central equilibrium based upon the summed units of neuronal processes within the cerebral cortices for the moment of inertia was 1 to 2 ms which are the boundaries for the action potential of axons and the latencies for diffusion of neurotransmitters. The calculated additional energy available to each neuron within the human cerebrum during the torque condition was ~10-20 J which is the same order of magnitude as the energy associated with action potentials, resting membrane potentials, and ligand-receptor binding. It is also the basic energy at the level of the neuronal cell membrane that originates from gravitational forces upon a single cell and the local expression of the uniaxial magnetic anisotropic constant for ferritin which occurs in the brain. These results indicate that the more complex electrophysiological functions that are strongly correlated with cognitive and related human properties can be described by basic physics and may respond to specific geomagnetic spatial orientation.


Sign in / Sign up

Export Citation Format

Share Document