scholarly journals On the terms of geomagnetic daily variation in Antarctica

2009 ◽  
Vol 27 (6) ◽  
pp. 2483-2490 ◽  
Author(s):  
P. De Michelis ◽  
R. Tozzi ◽  
A. Meloni

Abstract. The target of this work is to investigate the nature of magnetic perturbations produced by ionospheric and magnetospheric currents as recorded at high-latitude geomagnetic stations. In particular, we investigate the effects of these currents on geomagnetic data recorded in Antarctica. To this purpose we apply a mathematical method, known as Natural Orthogonal Composition, to analyze the magnetic field disturbances along the three geomagnetic field components (X, Y and Z) recorded at Mario Zucchelli Station (IAGA code TNB; geographic coordinates: 74.7° S, 164.1° E) from 1995 to 1998. Using this type of analysis, we characterize the dominant modes of the geomagnetic field daily variability through a set of empirical orthogonal functions (EOFs). While such mathematically independent EOFs do not necessarily represent physically independent modes of variability, we find that some of them are actually related to well known current patterns located at high latitudes.

2015 ◽  
Vol 58 (5) ◽  
Author(s):  
Paola De Michelis ◽  
Giuseppe Consolini

<p style="-qt-block-indent: 0; text-indent: 0px; margin: 0px;">The aim of this work is to investigate the nature of the daily magnetic field perturbations produced by ionospheric and magnetospheric currents at high latitudes. We analyse the hourly means of the X and Y geomagnetic field components recorded by a meridian chain of permanent geomagnetic observatories in the polar region of the Northern Hemisphere during a period of four years (1995-1998) around the solar minimum. We apply a mathematical method, known as natural orthogonal component (NOC), which is capable of characterizing the dominant modes of the geomagnetic field daily variability through a set of empirical orthogonal functions (EOFs). Using the first two modes we reconstruct a two-dimensional equivalent current representation of the ionospheric electric currents, which contribute substantially to the geomagnetic daily variations. The obtained current structures resemble the equivalent current patterns of DP2 and DP1. We characterize these currents by studying their evolution with the geomagnetic activity level and by analysing their dependence on the interplanetary magnetic field. The obtained results support the idea of a coexistence of two main processes during all analysed period although one of them, the directly driven process, represents the dominant component of the geomagnetic daily variation.</p>


2007 ◽  
Vol 7 (6) ◽  
pp. 15409-15451 ◽  
Author(s):  
P. Braesicke ◽  
C. Brühl ◽  
M. Dameris ◽  
R. Deckert ◽  
V. Eyring ◽  
...  

Abstract. A statistical framework to evaluate the performance of chemistry-climate models with respect to the interaction between meteorology and ozone during northern hemisphere mid-winter, in particularly January, is used. Different statistical diagnostics from four chemistry-climate models (E39C, ME4C, UMUCAM, ULAQ) are compared with the ERA-40 re-analysis. First, we analyse vertical coherence in geopotential height anomalies as described by linear correlations between two different pressure levels (30 and 200 hPa) of the atmosphere. In addition, linear correlations between (partial) column ozone and geopotential height anomalies at 200 hPa are discussed to motivate a simple picture of the meteorological impacts on ozone on interannual timescales. Secondly, we discuss characteristic spatial structures in geopotential height and (partial) column ozone anomalies as given by their first two empirical orthogonal functions. Finally, we describe the covariance patterns between reconstructed anomalies of geopotential height and (partial) column ozone. In general we find good agreement between the models with higher horizontal resolution (E39C, ME4C, UMUCAM) and ERA-40. Some diagnostics seem to be capable of picking up model similarities (either that the models use the same dynamical core (E39C, ME4C), or that they have a high upper boundary (ME4C, UMUCAM)). The methodology allows to identify the leading modes of variability contributing to the overall ozone-geopotential height correlations and points to interesting differences between the chemistry-climate models and ERA-40. Those discrepancies have to be taken into account when providing confidence intervals for climate change integrations.


2013 ◽  
Vol 7 (1) ◽  
pp. 29-36 ◽  
Author(s):  
R.G. Rastogi ◽  
H. Chandra ◽  
Rahul Shah ◽  
N.B. Trivedi ◽  
S.L. Fontes

The paper describes the characteristics of the equatorial electrojet at Huancayo (HUA, 12.1oS, 75.3oW, inclination 1.5oN, declination 1.0oE) in western side of South America, where the geomagnetic field is aligned almost along the geographic meridian, and at Itinga (ITI, 4.3oS, 47.oW, inclination 1.4oN, declination 19.3oW) in eastern part of South America, where the geomagnetic field is aligned about 19o west of the geographic meridian; although the mean intensity of the magnetic field in the two regions are almost of the same order. Further comparisons are made of the current at Itinga and at Tatuoca (TTB, 1.2oS, 48.5oW, inclination 7.8o N, declination 18.7oW), a low latitude station in the same longitude sector. The daily range of horizontal component of the geomagnetic field, H, is shown to be almost 16% higher at HUA compared to that at ITI. The daily variation of the eastward field, Y, showed a strong minimum of -40 nT around 13-14 hr LT at ITI whereas very low values were observed at HUA with a positive peak of about 4 nT around 11- 12 hr LT. The vertical field, Z, showed abnormally large negative values of -70 nT at TTB around 13 hr LT. The day-today fluctuations of midday and midnight values of X field were positively correlated between HUA and ITI with a high correlation coefficient of 0.78 and 0.88 respectively. Values of Y field were also significantly positively correlated between HUA and ITI for midnight hours (0.72), while no correlation was observed for the midday hours. The midnight values of X field at HUA, ITI and TTB showed significant (0.90 or greater) correlation with Dst index. Correlation values of about 0.7 were observed between Dst and midday values of X at ITI and TTB and to a lesser degree (0.4) at HUA.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Charles Onyutha

Trends and variability in series comprising the mean of fifteen highest daily rainfall intensities in each year were analyzed considering entire Uganda. The data were extracted from high-resolution (0.5° × 0.5°) gridded daily series of the Princeton Global Forcings covering the period 1948–2008. Variability was analyzed using nonparametric anomaly indicator method and empirical orthogonal functions. Possible drivers of the rainfall variability were investigated. Trends were analyzed using the cumulative rank difference approach. Generally, rainfall was above the long-term mean from the mid-1950s to the late 1960s and again in the 1990s. From around 1970 to the late 1980s, rainfall was characterized by a decrease. The first and second dominant modes of variability correspond with the variation in Indian Ocean Dipole and North Atlantic Ocean index, respectively. The influence of Niño 3 on the rainfall variability of some parts of the country was also evident. The southern and northern parts had positive and negative trends, respectively. The null hypothesisH0(no trend) was collectively rejected at the significance level of 5% in the series from 7 out of 168 grid points. The insights from the findings of this study are vital for planning and management of risk-based water resources applications.


2020 ◽  
Author(s):  
Cristiana Stefan ◽  
Venera Dobrica ◽  
Crisan Demetrescu

&lt;p&gt;Using the COV-OBS.x1 (Gillet et al., 2015) main geomagnetic field model, covering the time span 1840&amp;#8211;2020, respectively IGRF-13 (1900-2020), we decomposed the geomagnetic field at Earth&amp;#8217;s surface in oscillation modes by means of empirical orthogonal functions (EOF) as well into a long term and a cyclic component using HP filtering (Hodrick and Prescott, 1997). Further, the long term component is filtered using a Butterworth filter (1930) with different cut-off periods in order to obtain oscillation at inter-centennial (&gt; 100 years) and sub-centennial (60-90 years) timescales. The EOF analysis shows that the first three oscillation modes are characterized by periodicities of &gt;100 years while modes 4 and 5 are characterized by dominant periodicities of 70-90 year. Although the variance of the modes 4 and 5 is rather small compared to that of the first three modes, these two modes are responsible for the detailed structure of the geomagnetic field. A comparison between the results of both methods is done as well.&lt;/p&gt;


2020 ◽  
Author(s):  
Chi-Hua Chung ◽  
Benjamin Fong Chao

&lt;p&gt;We examine the secular variations of global geomagnetic field on long temporal scales using the IGRF model given in Gauss coefficients for 1900 - 2020. We apply the Empirical Orthogonal Function (EOF) analysis to the geomagnetic field truncated at degree 6 and downward continue it to the core-mantle boundary (CMB) under the assumption of an insulating mantle. The first three EOF modes show the periods around 120, 75 and 60 years with corresponding spatial structures. These oscillational modes potentially support the manifestation of magnetic, Archimedes and Coriolis (MAC) waves in the stably stratified layer near CMB (Buffett, 2016). We also model and decompose the geomagnetic field to standing and drifting components according to trajectories of the Gauss coefficients similarly to Yukutake (2015). We then use the Complex EOF (CEOF) analysis on the drifting field. The results indicate the presence of the westward drift phenomenon but only weakly given the fact that the westward drift has only completed a fraction of a cycle during this time.&lt;/p&gt;


2021 ◽  
Vol 929 (1) ◽  
pp. 012022
Author(s):  
S A Imashev

Abstract The aim of this study is to present a method for detection of outliers in the time series of total intensity of geomagnetic field using Extended Isolation Forest algorithm. The method is consisted of three steps: 1) generation of additional features that take into account the regular daily variation and smooth behaviour of normal data, 2) detection of potential outliers based on ensemble of extended isolating trees and 3) subsequent refinement based on difference between the outlier and its replacement with interpolated value. Application of the method for detection of outliers in yearly time series of the total geomagnetic field at Ak-Suu and Kegety stations showed that the algorithm identifies both global and contextual outliers. Average classification metrics for the method are characterized as high and have the following values: precision 94.3%, recall 93.9% and F-score 94.5%, and probabilities of errors of the first and second kind are comparable to similar algorithms used for detection of outliers in magnetograms of different sampling rate.


2014 ◽  
Vol 71 (9) ◽  
pp. 3180-3201 ◽  
Author(s):  
Stefan F. Cecelski ◽  
Da-Lin Zhang

Abstract In this study, the predictability of tropical cyclogenesis (TCG) is explored by conducting ensemble sensitivity analyses on the TCG of Hurricane Julia (2010). Using empirical orthogonal functions (EOFs), the dominant patterns of ensemble disagreements are revealed for various meteorological parameters such as mean sea level pressure (MSLP) and upper-tropospheric temperature. Using the principal components of the EOF patterns, ensemble sensitivities are generated to elucidate which mechanisms drive the parametric ensemble differences. The dominant pattern of MSLP ensemble spread is associated with the intensity of the pre–tropical depression (pre-TD), explaining nearly half of the total variance at each respective time. Similar modes of variance are found for the low-level absolute vorticity, though the patterns explain substantially less variance. Additionally, the largest modes of variability associated with upper-level temperature anomalies closely resemble the patterns of MSLP variance, suggesting interconnectedness between the two parameters. Sensitivity analyses at both the pre-TD and TCG stages reveal that the MSLP disturbance is strongly correlated to upper-tropospheric temperature and, to a lesser degree, surface latent heat flux anomalies. Further sensitivity analyses uncover a statistically significant correlation between upper-tropospheric temperature and convective anomalies, consistent with the notion that deep convection is important for augmenting the upper-tropospheric warmth during TCG. Overall, the ensemble forecast differences for the TCG of Julia are strongly related to the processes responsible for MSLP falls and low-level cyclonic vorticity growth, including the growth of upper-tropospheric warming and persistent deep convection.


2007 ◽  
Vol 14 (2) ◽  
pp. 163-180 ◽  
Author(s):  
A. Fournier ◽  
C. Eymin ◽  
T. Alboussière

Abstract. Secular variations of the geomagnetic field have been measured with a continuously improving accuracy during the last few hundred years, culminating nowadays with satellite data. It is however well known that the dynamics of the magnetic field is linked to that of the velocity field in the core and any attempt to model secular variations will involve a coupled dynamical system for magnetic field and core velocity. Unfortunately, there is no direct observation of the velocity. Independently of the exact nature of the above-mentioned coupled system – some version being currently under construction – the question is debated in this paper whether good knowledge of the magnetic field can be translated into good knowledge of core dynamics. Furthermore, what will be the impact of the most recent and precise geomagnetic data on our knowledge of the geomagnetic field of the past and future? These questions are cast into the language of variational data assimilation, while the dynamical system considered in this paper consists in a set of two oversimplified one-dimensional equations for magnetic and velocity fields. This toy model retains important features inherited from the induction and Navier-Stokes equations: non-linear magnetic and momentum terms are present and its linear response to small disturbances contains Alfvén waves. It is concluded that variational data assimilation is indeed appropriate in principle, even though the velocity field remains hidden at all times; it allows us to recover the entire evolution of both fields from partial and irregularly distributed information on the magnetic field. This work constitutes a first step on the way toward the reassimilation of historical geomagnetic data and geomagnetic forecast.


Sign in / Sign up

Export Citation Format

Share Document