Research of Business Impact Analysis for Disaster Management of Building of Information Communication Network

Author(s):  
Yun-Chul Choi ◽  
Gwang-Deok Seo
2014 ◽  
Vol 29 (6) ◽  
pp. 561-568 ◽  
Author(s):  
Hiroshi Suginaka ◽  
Ken Okamoto ◽  
Yohei Hirano ◽  
Yuichi Fukumoto ◽  
Miki Morikawa ◽  
...  

AbstractIntroductionThe catastrophic Great East Japan Earthquake in 2011 created a crisis in a university-affiliated hospital by disrupting the water supply for 10 days. In response, this study was conducted to analyze water use and prioritize water consumption in each department of the hospital by applying a business impact analysis (BIA). Identifying the minimum amount of water necessary for continuing operations during a disaster was an additional goal.ProblemWater is essential for many hospital operations and disaster-ready policies must be in place for the safety and continued care of patients.MethodsA team of doctors, nurses, and office workers in the hospital devised a BIA questionnaire to examine all operations using water. The questionnaire included department name, operation name, suggested substitutes for water, and the estimated daily amount of water consumption. Operations were placed in one of three ranks (S, A, or B) depending on the impact on patients and the need for operational continuity. Recovery time objective (RTO), which is equivalent to the maximum tolerable period of disruption, was determined. Furthermore, the actual use of water and the efficiency of substitute methods, practiced during the water-disrupted periods, were verified in each operation.ResultsThere were 24 activities using water in eight departments, and the estimated water consumption in the hospital was 326 (SD = 17) m3per day: 64 (SD = 3) m3for S (20%), 167 (SD = 8) m3for A (51%), and 95 (SD = 5) m3for B operations (29%). During the disruption, the hospital had about 520 m3of available water. When the RTO was set to four days, the amount of water available would have been 130 m3per day. During the crisis, 81% of the substitute methods were used for the S and A operations.ConclusionThis is the first study to identify and prioritize hospital operations necessary for the efficient continuation of medical treatment during suspension of the water supply by applying a BIA. Understanding the priority of operations and the minimum daily water requirement for each operation is important for a hospital in the event of an unexpected adverse situation, such as a major disaster.SuginakaH,OkamotoK,HiranoY,FukumotoY,MorikawaM,OodeY,SumiY,InoueY,MatsudaS,TanakaH.Hospital disaster response using business impact analysis.Prehosp Disaster Med.2014;29(5):1-8.


2018 ◽  
Vol 173 ◽  
pp. 02026
Author(s):  
Jiandong Ma

In order to meet the needs of real-time positioning and remote dispatching of vehicle, this paper designs a ZigBee-based embedded vehicle terminal and the corresponding ZigBee-GPRS information communication network in hardware and software. With LPC2366 processor and CC2430 RF chip as core, the vehicle terminal acquires the vehicle‘s status in cycle, and completes the vehicle monitoring and scheduling by transmitting data to communication nodes by ZigBee and passing the data on to the monitoring center by GPRS. This vehicle terminal is characterized by small size, low energy consumption and ideal communication distance, which makes the monitoring center effectively monitor and schedule the vehicles.


Sign in / Sign up

Export Citation Format

Share Document