scholarly journals Processes Governing Giant Subduction Earthquakes: IODP Drilling to Sample and Instrument Subduction Zone Megathrusts

Oceanography ◽  
2019 ◽  
Vol 32 (1) ◽  
pp. 80-93 ◽  
Author(s):  
Harold Tobin ◽  
Gaku Kimura ◽  
Shuichi Kodaira
2021 ◽  
Vol 1 (2) ◽  
pp. 75-84
Author(s):  
Charlotte Pizer ◽  
Kate Clark ◽  
Jamie Howarth ◽  
Ed Garrett ◽  
Xiaoming Wang ◽  
...  

Abstract Geological records of subduction earthquakes, essential for seismic and tsunami hazard assessment, are difficult to obtain at transitional plate boundaries, because upper-plate fault earthquake deformation can mask the subduction zone signal. Here, we examine unusual shell layers within a paleolagoon at Lake Grassmere, at the transition zone between the Hikurangi subduction zone and the Marlborough fault system. Based on biostratigraphic and sedimentological analyses, we interpret the shell layers as tsunami deposits. These are dated at 2145–1837 and 1505–1283 yr B.P., and the most likely source of these tsunamis was ruptures of the southern Hikurangi subduction interface. Identification of these two large earthquakes brings the total record of southern Hikurangi subduction earthquakes to four in the past 2000 yr. For the first time, it is possible to obtain a geologically constrained recurrence interval for the southern Hikurangi subduction zone. We calculate a recurrence interval of 500 yr (335–655 yr, 95% confidence interval) and a coefficient of variation of 0.27 (0.0–0.47, 95% confidence interval). The probability of a large subduction earthquake on the southern Hikurangi subduction zone is 26% within the next 50 yr. We find no consistent temporal relationship between subduction earthquakes and large earthquakes on upper-plate faults.


1998 ◽  
Vol 25 (6) ◽  
pp. 1078-1090 ◽  
Author(s):  
R Tremblay

There is now growing evidence that large-magnitude earthquakes have occurred and could occur again along the Cascadia subduction zone located west of Vancouver Island, Bristish Columbia. Numerical simulations indicate that these earthquakes would produce long-duration ground motions and would thus be capable of inducing a large number of reversals of inelastic deformations in engineered structures. Efforts have now been undertaken to account for this damage potential in building codes. In this paper, inelastic design spectra are developed for Cascadia subduction earthquakes for four sites in British Columbia. These spectra are compared with elastic design spectra that have been developed recently for the same sites based on empirical attenuation relationships for Cascadia events. The approach used to develop the inelastic spectra aims at providing the same level of protection against structural failure for both subduction events and crustal or subcrustal earthquakes. Force modification factors are first determined for structures exhibiting various failure modes and ductility levels when subjected to representative crustal and subcrustal earthquake ground motions. Thereafter, design spectra are developed for the same structures to prevent structural collapse under simulated Cascadia subduction ground motions. The study reveals that the elastic spectra do not reflect adequately the damage potential of Cascadia earthquakes. These elastic spectra generally are unconservative for Tofino and Victoria. For Vancouver and Prince George, the elastic spectra overestimate the demand, especially for short-period structures.Key words: collapse, crustal earthquakes, damage index, design spectrum, ductility, duration, ground motion, subduction zone.


Solid Earth ◽  
2012 ◽  
Vol 3 (2) ◽  
pp. 447-465 ◽  
Author(s):  
R. D. Müller ◽  
T. C. W. Landgrebe

Abstract. Giant subduction earthquakes are known to occur in areas not previously identified as prone to high seismic risk. This highlights the need to better identify subduction zone segments potentially dominated by relatively long (up to 1000 yr and more) recurrence times of giant earthquakes. We construct a model for the geometry of subduction coupling zones and combine it with global geophysical data sets to demonstrate that the occurrence of great (magnitude ≥ 8) subduction earthquakes is strongly biased towards regions associated with intersections of oceanic fracture zones and subduction zones. We use a computational recommendation technology, a type of information filtering system technique widely used in searching, sorting, classifying, and filtering very large, statistically skewed data sets on the Internet, to demonstrate a robust association and rule out a random effect. Fracture zone–subduction zone intersection regions, representing only 25% of the global subduction coupling zone, are linked with 13 of the 15 largest (magnitude Mw ≥ 8.6) and half of the 50 largest (magnitude Mw ≥ 8.4) earthquakes. In contrast, subducting volcanic ridges and chains are only biased towards smaller earthquakes (magnitude < 8). The associations captured by our statistical analysis can be conceptually related to physical differences between subducting fracture zones and volcanic chains/ridges. Fracture zones are characterised by laterally continuous, uplifted ridges that represent normal ocean crust with a high degree of structural integrity, causing strong, persistent coupling in the subduction interface. Smaller volcanic ridges and chains have a relatively fragile heterogeneous internal structure and are separated from the underlying ocean crust by a detachment interface, resulting in weak coupling and relatively small earthquakes, providing a conceptual basis for the observed dichotomy.


2012 ◽  
Vol 4 (2) ◽  
pp. 1229-1280 ◽  
Author(s):  
R. D. Müller ◽  
T. C. W. Landgrebe

Abstract. Giant subduction earthquakes are known to occur in areas not previously identified as prone to high seismic risk. This highlights the need to better identify subduction zone segments potentially dominated by relatively long (up to 1000 yr and more) recurrence times of giant earthquakes. We construct a model for the geometry of subduction coupling zones and combine it with global geophysical data sets to demonstrate that the occurrence of great (magnitude ≥ 8) subduction earthquakes is strongly biased towards regions associated with intersections of oceanic fracture zones and subduction zones. We use a computational recommendation technology, a type of information filtering system technique widely used in searching, sorting, classifying, and filtering very large, statistically skewed data sets on the internet, to demonstrate a robust association and rule out a random effect. Fracture zone-subduction zone intersection regions, representing only 25% of the global subduction coupling zone, are linked with 13 of the 15 largest (magnitude (Mw ≥ 8.6) and half of the 50 largest, magnitude ≥ 8.4) earthquakes. In contrast, subducting volcanic ridges and chains are only biased towards smaller earthquakes (magnitude < 8). The associations captured by our statistical analysis can be conceptually related to physical differences between subducting fracture zones and volcanic chains/ridges. Fracture zones are characterized by laterally continuous, uplifted ridges that represent normal ocean crust with a high degree of structural integrity, causing strong, persistent coupling in the subduction interface. Smaller volcanic ridges and chains, not have a relatively fragile heterogeneous internal structure and are separated from the underlying ocean crust by a detachment interface, resulting in weak coupling and relatively small earthquakes, explaining the observed dichotomy.


Sign in / Sign up

Export Citation Format

Share Document