scholarly journals On the State Estimation for Stochastic Distributed Parameter Systems with Dynamic Boundary Conditions

Author(s):  
Masaaki Ishikawa ◽  
Hidefumi Hashimoto
Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 661
Author(s):  
Huansen Fu ◽  
Baotong Cui ◽  
Bo Zhuang ◽  
Jianzhong Zhang

This work proposes a state estimation strategy over mobile sensor–actuator networks with missing measurements for a class of distributed parameter systems (DPSs) with time-varying delay. Initially, taking advantage of the abstract development equation theory and operator semigroup method, this kind of delayed DPSs described by partial differential equations (PDEs) is derived for evolution equations. Subsequently, the distributed state estimators including consistency component and gain component are designed; the purpose is to estimate the original state distribution of the delayed DPSs with missing measurements. Then, a delay-dependent guidance approach is presented in the form of mobile control forces by constructing an appropriate Lyapunov function candidate. Furthermore, by applying Lyapunov stability theorem, operator semigroup theory, and a stochastic analysis approach, the estimation error systems have been proved asymptotically stable in the mean square sense, which indicates the estimators can approximate the original system states effectively when this kind of DPS has time-delay and the mobile sensors occur missing measurements. Finally, the correctness of control strategy is illustrated by numerical simulation results.


2021 ◽  
pp. 1-27
Author(s):  
Ahmad Makki ◽  
Alain Miranville ◽  
Madalina Petcu

In this article, we are interested in the study of the well-posedness as well as of the long time behavior, in terms of finite-dimensional attractors, of a coupled Allen–Cahn/Cahn–Hilliard system associated with dynamic boundary conditions. In particular, we prove the existence of the global attractor with finite fractal dimension.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
El Mustapha Ait Ben Hassi ◽  
Salah-Eddine Chorfi ◽  
Lahcen Maniar

Abstract We study an inverse problem involving the restoration of two radiative potentials, not necessarily smooth, simultaneously with initial temperatures in parabolic equations with dynamic boundary conditions. We prove a Lipschitz stability estimate for the relevant potentials using a recent Carleman estimate, and a logarithmic stability result for the initial temperatures by a logarithmic convexity method, based on observations in an arbitrary subdomain.


Sign in / Sign up

Export Citation Format

Share Document