scholarly journals An Efficient Convex Formulation for Reduced-Rank Linear Discriminant Analysis in High Dimensions

2023 ◽  
Author(s):  
Jing Zeng ◽  
Xin Zhang ◽  
Qing Mai
2019 ◽  
Vol 3 (2) ◽  
pp. 72
Author(s):  
Widi Astuti ◽  
Adiwijaya Adiwijaya

Cancer is one of the leading causes of death globally. Early detection of cancer allows better treatment for patients. One method to detect cancer is using microarray data classification. However, microarray data has high dimensions which complicates the classification process. Linear Discriminant Analysis is a classification technique which is easy to implement and has good accuracy. However, Linear Discriminant Analysis has difficulty in handling high dimensional data. Therefore, Principal Component Analysis, a feature extraction technique is used to optimize Linear Discriminant Analysis performance. Based on the results of the study, it was found that usage of Principal Component Analysis increases the accuracy of up to 29.04% and f-1 score by 64.28% for colon cancer data.


Border Gateway Protocol (BGP) is a vital protocol on the internet for transfer of data packets among Autonomous System (AS). Security is a major concern for the transmission of BGP packets which are often attacked by worms or are hijacked by an attacker which results in requests entering black holes or loss of connection to the particular sites. The BGP anomalies can be reduced by analyzing the BGP datasets. Since, ASes communicate through messages, therefore, the anomalies can be reduced by identifying the corrupted BGP message in the dataset. In this paper, BGP anomalies have been classified by applying Machine learning (ML) algorithms. The dataset contains information about the sending and receiving time between ASes. The classifiers were used to predict the anomalies. Since the dataset had high dimensions, the dimensions were reduced using Linear Discriminant Analysis (LDA) and then Support Vector Machines (SVM), K-Nearest Neighbors (KNN), Linear Regression, Logistic Regression and Multi-Layer Perceptron (MLP) have been used to classify the anomalies.


2020 ◽  
Vol 16 (8) ◽  
pp. 1079-1087
Author(s):  
Jorgelina Z. Heredia ◽  
Carlos A. Moldes ◽  
Raúl A. Gil ◽  
José M. Camiña

Background: The elemental composition of maize grains depends on the soil, land and environment characteristics where the crop grows. These effects are important to evaluate the availability of nutrients with complex dynamics, such as the concentration of macro and micronutrients in soils, which can vary according to different topographies. There is available scarce information about the influence of topographic characteristics (upland and lowland) where culture is developed with the mineral composition of crop products, in the present case, maize seeds. On the other hand, the study of the topographic effect on crops using multivariate analysis tools has not been reported. Objective: This paper assesses the effect of topographic conditions on plants, analyzing the mineral profiles in maize seeds obtained in two land conditions: uplands and lowlands. Materials and Methods: The mineral profile was studied by microwave plasma atomic emission spectrometry. Samples were collected from lowlands and uplands of cultivable lands of the north-east of La Pampa province, Argentina. Results: Differentiation of maize seeds collected from both topographical areas was achieved by principal components analysis (PCA), cluster analysis (CA) and linear discriminant analysis (LDA). PCA model based on mineral profile allowed to differentiate seeds from upland and lowlands by the influence of Cr and Mg variables. A significant accumulation of Cr and Mg in seeds from lowlands was observed. Cluster analysis confirmed such grouping but also, linear discriminant analysis achieved a correct classification of both the crops, showing the effect of topography on elemental profile. Conclusions: Multi-elemental analysis combined with chemometric tools proved useful to assess the effect of topographic characteristics on crops.


2020 ◽  
Vol 15 ◽  
Author(s):  
Mohanad Mohammed ◽  
Henry Mwambi ◽  
Bernard Omolo

Background: Colorectal cancer (CRC) is the third most common cancer among women and men in the USA, and recent studies have shown an increasing incidence in less developed regions, including Sub-Saharan Africa (SSA). We developed a hybrid (DNA mutation and RNA expression) signature and assessed its predictive properties for the mutation status and survival of CRC patients. Methods: Publicly-available microarray and RNASeq data from 54 matched formalin-fixed paraffin-embedded (FFPE) samples from the Affymetrix GeneChip and RNASeq platforms, were used to obtain differentially expressed genes between mutant and wild-type samples. We applied the support-vector machines, artificial neural networks, random forests, k-nearest neighbor, naïve Bayes, negative binomial linear discriminant analysis, and the Poisson linear discriminant analysis algorithms for classification. Cox proportional hazards model was used for survival analysis. Results: Compared to the genelist from each of the individual platforms, the hybrid genelist had the highest accuracy, sensitivity, specificity, and AUC for mutation status, across all the classifiers and is prognostic for survival in patients with CRC. NBLDA method was the best performer on the RNASeq data while the SVM method was the most suitable classifier for CRC across the two data types. Nine genes were found to be predictive of survival. Conclusion: This signature could be useful in clinical practice, especially for colorectal cancer diagnosis and therapy. Future studies should determine the effectiveness of integration in cancer survival analysis and the application on unbalanced data, where the classes are of different sizes, as well as on data with multiple classes.


Sign in / Sign up

Export Citation Format

Share Document