scholarly journals Effect of Grape Pomace Powder, Mangosteen Peel Powder and Monensin on Nutrient Digestibility, Rumen Fermentation, Nitrogen Balance and Microbial Protein Synthesis in Dairy Steers

2015 ◽  
Vol 29 (10) ◽  
pp. 1416-1423 ◽  
Author(s):  
S. Foiklang ◽  
M. Wanapat ◽  
T. Norrapoke
2021 ◽  
Vol 194 ◽  
pp. 106293
Author(s):  
Gildênia Araújo Pereira ◽  
Edson Mauro Santos ◽  
Juliana Silva de Oliveira ◽  
Gherman Garcia Leal de Araújo ◽  
Raniere de Sá Paulino ◽  
...  

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 72-73
Author(s):  
Paul Tamayao ◽  
Tim A McAllister ◽  
Kim Ominski ◽  
Gabriel Ribeiro ◽  
Erasmus Okine ◽  
...  

Abstract This study investigated the effects of engineered biocarbon on nutrient digestibility, rumen fermentation, total gas and methane (CH4) emissions, and microbial protein synthesis in a rumen simulation technique (RUSITEC) fed a barley silage-based TMR. The basal diet consisted of 60% barley silage, 27% barley grain, 10% canola meal and 3% minerals. Three pine-based biocarbon products CP016, CP024 and CP028. were added at 2% of substrate DM. Biocarbons differed in bulk density, surface area, pore volume, pH, but had similar chemical compositions. Treatments were assigned to sixteen vessels (n = 4/treatment) in two RUSITEC apparatuses in a randomized block design. The experiment period was 17 d, with a 10-d adaptation and 7-d sample collection period. Data were analyzed using the PROC MIXED in SAS, with treatment (T), day (D) and TxD interactions as fixed effects and RUSITEC apparatus and fermenters as random effects. Compared to the control, biocarbon did not affect total gas (P = 0.98), the amount of CH4 produced per unit of DM incubated (P = 0.48) or per unit of DM digested (P = 0.27). Biocarbon treatments averaged 6.5 g of CH4 /g DM incubated and 9.06 g CH4 /g DM digested as compared to 7.1 g of CH4 /g DM incubated and 10.46 g CH4 / g DM digested in the control, respectively. Biocarbon CP024 had the greatest numerical reduction, followed by CP028 then CP016 in all CH4 associated parameters. Biocarbon addition did not affect the disappearance of DM (P = 0.63), OM (P = 0.34), CP (P = 0.48), NDF (P = 0.12), or VFA (P = 0.65) and ammonia N levels (P = 0.99) and protozoal counts (P = 0.72). The amount of bacterial nitrogen (mg/d) associated with feed particles increased (P < 0.003), suggesting that biocarbon may have enhanced colonization. In conclusion, engineered biocarbon did not reduce CH4 emissions in the RUSITEC.


2021 ◽  
pp. 1-13
Author(s):  
Paul Tamayao ◽  
Gabriel O. Ribeiro ◽  
Tim A. McAllister ◽  
Kim H. Ominski ◽  
Atef M. Saleem ◽  
...  

This study investigated the effects of three pine-based biochar products on nutrient disappearance, total gas and methane (CH4) production, rumen fermentation, microbial protein synthesis, and rumen microbiota in a rumen simulation technique (RUSITEC) fed a barley-silage-based total mixed ration (TMR). Treatments consisted of 10 g TMR supplemented with no biochar (control) and three different biochars (CP016, CP024, and CP028) included at 20 g·kg−1 DM. Treatments were assigned to 16 fermenters (n = 4 per treatment) in two RUSITEC units in a randomized block design for a 17 d experimental period. Data were analyzed using MIXED procedure in SAS, with treatment and day of sampling as fixed effects and RUSITEC unit and fermenters as random effects. Biochar did not affect nutrient disappearance (P > 0.05), nor total gas or CH4, irrespective of unit of expression. The volatile fatty acid, NH3-N, total protozoa, and microbial protein synthesis were not affected by biochar inclusion (P > 0.05). Alpha and beta diversity and rumen microbiota families were not affected by biochar inclusion (P > 0.05). In conclusion, biochar did not reduce CH4 emissions nor affect nutrient disappearance, rumen fermentation, microbial protein synthesis, or rumen microbiota in the RUSITEC.


Sign in / Sign up

Export Citation Format

Share Document