Stability-Indicating Methods for the Determination of Candesartan Cilexetil in Bulk Drug and Pharmaceutical Formulations

2013 ◽  
Vol 96 (3) ◽  
pp. 580-586 ◽  
Author(s):  
Yousry M Issa ◽  
Emad M Hussien ◽  
Magda M Ibrahim ◽  
Fatma M Abdel-Gawad ◽  
Saadia Barakat

Abstract Two stability-indicating methods were developed for the determination of candesartan cilexetil in the presence of its degradation products. The first method uses isocratic RP-HPLC with an Agilent C18 column. The mobile phase was phosphate buffer (pH = 2.8 ± 0.1)–acetonitrile (60 + 40, v/v). The flow rate was 2.0 mL/min, and the UV detection was at 254 nm. The second method depends on TLC-densitometric measurements of drug spots at 254 nm. The separation was carried out on silica gel 60 F254 plates using ethyl acetate–methanol–toluene– ammonia 33% (40 + 25 + 20 + 2, v/v/v/v) mobile phase. The methods were validated according to U.S. Pharmacopeia guidelines, and the acceptance criteria for accuracy, precision, linearity, specificity, robustness, LOD, LOQ, and system suitability were met in all cases. Linear ranges of the methods were 10.0–200.0 μg/mL and 1.0–9.0 μg/spot for HPLC and TLC, respectively. The proposed methods were successfully applied to the drug in bulk powder, in laboratory-prepared mixtures with its degradation products, and in commercially available tablets. The results were compared statistically at the 95% confidence level with each other. There were no significant differences between the mean recovery and precision of the two methods.

2015 ◽  
Vol 51 (4) ◽  
pp. 803-810 ◽  
Author(s):  
Janaíne Micheli Chassot ◽  
Luana Mota Ferreira ◽  
Felipe Pereira Gomes ◽  
Letícia Cruz ◽  
Leandro Tasso

abstract A simple stability-indicating RP-HPLC/UV method was validated for determination of beclomethasone dipropionate (BD) in nanocapsule suspensions. Chromatographic conditions consisted of a RP C18column (250 mm x 4.60 mm, 5 µm, 110 Å), using methanol and water (85:15 v/v) as mobile phase at 1.0 mL/min with UV detection at 254 nm. The calibration curve was found to be linear in the concentration range of 5.0-25.0 µg/mL with a correlation coefficient > 0.999. Precision was demonstrated by a relative standard deviation lower than 2.0%. Accuracy was assessed by the recovery test of BD from nanocapsules (98.03% to 100.35%). Specificity showed no interference from the components of nanocapsules or from the degradation products derived from acid, basic and photolytic conditions. In conclusion, the method is suitable to be applied to assay BD in bulk drug and in nanocapsules, and it can be employed to study stability and degradation kinetics.


2017 ◽  
Vol 59 (2) ◽  
Author(s):  
Muhammad Ashfaq

A simple, specific and accurate stability indicating RPHPLC method was developed for the determination of acetaminophen, pamabrom and pyrilamine maleate simultaneously in pharmaceutical dosage forms. Successful separation of all the components was enacted within 10 min using C18 column with mobile phase of methanol and acidified water (pH 1.8) in the ratio of (27: 73 v/v respectively). Flow rate of the mobile phase was 1.5 mL/min with detection at 300 nm. The method was validated in accordance with ICH guidelines. Response was a linear function of concentration over the range of 50- 150 􀈝g/mL for acetaminophen, 2.5-7.5 􀈝g/ mL for pamabrom and 1.5-4.5 􀈝g/mL for pyrilamine maleate. The method resulted in excellent separation of all the analytes along with their stress induced degradation products with acceptable peak tailing and good resolution. It is therefore can be applied successfully for simultaneous determination of acetaminophen, pamabrom and pyrilamine maleate in pharmaceutical formulations and their stability studies.


2014 ◽  
Vol 97 (1) ◽  
pp. 86-93 ◽  
Author(s):  
Nadia M Moustafa ◽  
Amr M Badawey ◽  
Nesrine T Lamie ◽  
Abd El-Aziz B Abd El-Aleem

Abstract Four accurate, sensitive, and reproducible stability-indicating methods for the determination of erdosteine in the presence of its acid degradation products are presented. The first method involves processing the spectra by using a first-derivative method at 229 nm in a concentration range of 10–70 μg/mL. The mean percentage recovery was 100.43 ± 0.977. The second method is based on ratio-spectra first derivative spectrophotometry at 227.4 and 255 nm over a concentration range of 10–70 μg/mL. The mean percentage recovery was 99.65 ± 1.122% and 100.02 ± 1.306% at 227.4 and 255 nm, respectively. The third method utilizes quantitative densitometric evaluation of the TLC of erdosteine in the presence of its acid degradation products, and uses methanol–chloroform–ammonia (7 + 3 + 0.01, v/v/v) asthe mobile phase. TLC chromatograms were scanned at235 nm. This method analyzes erdosteine in a concentration range of 2.4–5.6 μg/spot, with a mean percentage recovery of 100.03 ± 1.015%. The fourth method is HPLC for the simultaneousdetermination of erdosteine in the presence of its acid degradation products. The mobile phase consists of water–methanol (65 + 35, v/v). The standard curve of erdosteine showed good linearity overa concentration range of 10–80 μg/mL,with a mean percentage recovery of 99.90 ± 1.207%. These methods were successfully applied to the determination of erdosteine in bulk powder, laboratory-prepared mixtures containing different percentages of the degradation products, and pharmaceutical dosage forms. The validity of results was assessed by applying the standard addition technique. The results obtained agreed statistically with those obtained by a reported method, showing no significant differences with respect to accuracy and precision.


Author(s):  
K. Srinivasa Rao ◽  
Keshar N K ◽  
N Jena ◽  
M.E.B Rao ◽  
A K Patnaik

A stability-indicating LC assay method was developed for the quantitative determination of fenofibrate (FFB) in pharmaceutical dosage form in the presence of its degradation products and kinetic determinations were evaluated in acidic, alkaline and peroxide degradation conditions. Chromatographic separation was achieved by use of Zorbax C18 column (250 × 4.0 mm, 5 μm). The mobile phase was established by mixing phosphate buffer (pH adjusted 3 with phosphoric acid) and acetonitrile (30:70 v/v). FFB degraded in acidic, alkaline and hydrogen peroxide conditions, while it was more stable in thermal and photolytic conditions. The described method was linear over a range of 1.0-500 μg/ml for determination of FFB (r= 0.9999). The precision was demonstrated by relative standard deviation (RSD) of intra-day (RSD= 0.56– 0.91) and inter-day studies (RSD= 1.47). The mean recovery was found to be 100.01%. The acid and alkaline degradations of FFB in 1M HCl and 1M NaOH solutions showed an apparent zero-order kinetics with rate constants 0.0736 and 0.0698  min−1 respectively and the peroxide degradation with 5% H2O2 demonstrated an apparent first-order kinetics with rate constant k = 0.0202 per min. The t1/2, t90   values are also determined for all the kinetic studies. The developed method was found to be simple, specific, robust, linear, precise, and accurate for the determination of FFB in pharmaceutical formulations.  


2010 ◽  
Vol 93 (4) ◽  
pp. 1086-1092 ◽  
Author(s):  
Anna Gumieniczek ◽  
Anna Berecka ◽  
ukasz Komsta

Abstract For type 2 diabetes treatment, combinations of drugs from the thiazolidinedione and sulfonylurea groups are now available in the same tablet or capsule. Therefore, a stability-indicating and validated HPLC method was developed for simultaneous determination of pioglitazone, rosiglitazone, and glipizide in combined dosage forms. The examined drugs were subjected to different conditions such as acid and base, temperature, and UV light, and degradation of pioglitazone and glipizide was observed under thermal and acidic stress. However, selectivity of the presented method for pioglitazone, rosiglitazone, and glipizide assay against their degradation products was confirmed. It was also demonstrated to be robust, resisting small deliberate changes in pH of the buffer, flow rate, and percentage of acetonitrile in the mobile phase. The presented method utilizes a LiChrospher RP18 column (125 4.0 mm), acetonitrile in phosphate buffer at pH 4.3 (40 + 60, v/v) as the mobile phase, and UV detection at 225 nm for pioglitazone/glipizide or 245 nm for rosiglitazone/glipizide. The method was validated with respect to linearity, precision, and accuracy. Finally, the elaborated procedure was applied for the QC of pioglitazone/glipizide and rosiglitazone/glipizide mixtures.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Zarna R. Dedania ◽  
Ronak R. Dedania ◽  
Navin R. Sheth ◽  
Jigar B. Patel ◽  
Bhavna Patel

The objective of the current study was to develop a validated stability-indicating assay method (SIAM) for risperidone after subjecting it to forced decomposition under hydrolysis, oxidation, photolysis, and thermal stress conditions. The liquid chromatographic separation was achieved isocratically on a symmetry C18 column (5 μm size, 250 mm × 4.6 mm i.d.) using a mobile phase containing methanol: acetonitrile (80 : 20, v/v) at a flow rate of 1 mL/min and UV detection at 280 nm. Retention time of risperidone was found to be . The method was linear over the concentration range of 10–60 μg/mL with a limit of detection and quantitation of 1.79 and 5.44 μg/mL, respectively. The method has the requisite accuracy, specificity, sensitivity, and precision to assay risperidone in bulk form and pharmaceutical dosage forms. Degradation products resulting from the stress studies did not interfere with the detection of Risperidone, and the assay is thus stability indicating.


2021 ◽  
Vol 104 (4) ◽  
pp. 57-68
Author(s):  
V.G. Kamani ◽  
◽  
M. Sujatha ◽  
G.B. Daddala ◽  
◽  
...  

This study reports for the first time about a stability indicating RP-HPLC method for analysis of darolutamide and its impurities 1, 2, and 3 in bulk and formulations. The separation was achieved on Phenomenex column with Luna C18 (250 mm × 4.6 mm, 5 μm) as stationary phase, and 50 mM ammonium acetate: methanol solution 15:80 (v/v) at pH 5.2 as mobile phase at 1.0 mL/min flow rate. UV detection was carried at wavelength of 239 nm. In these conditions the retention time of darolutamide and its impurities 1, 2, and 3 was 7.05, 8.90, 4.63 and 5.95 min, respectively. The method was validated for system suitability, range of analysis, precision, specificity, stability, and robustness. Forced degradation study was done through exposure of the analyte to five different stress conditions and the % degradation was small in all degradation condition. The proposed method can separate and estimate the drug and its impurities in pharmaceutical formulations. Hence, the developed method was suitable for the quantification of darolutamide and can separate and analyse impurities 1, 2, and 3


Sign in / Sign up

Export Citation Format

Share Document