Quantification of Chlorogenic Acid and Hyperoside Directly from Crude Blueberry (Vaccinium angustifolium) Leaf Extract by NMR Spectroscopy Analysis: Single-Laboratory Validation

2012 ◽  
Vol 95 (5) ◽  
pp. 1406-1411 ◽  
Author(s):  
Joshua M Hicks ◽  
Asim Muhammad ◽  
Jonathan Ferrier ◽  
Ammar Saleem ◽  
Alain Cuerrier ◽  
...  

Abstract A single-laboratory-validated NMR spectroscopy method was established for determining the quantity of chlorogenic acid and hyperoside from crude extract material of blueberry leaves of the species Vaccinium angustifolium var. laevifolium House. The calibration curve of chlorogenic acid showed a highly linear regression, R = 0.99998. NMR spectroscopy identification and quantification of the constituents directly from the mixture, within the error of HPLC-diode array detector analysis, were determined as 7.53 mM chlorogenic acid (64.0 mg chlorogenic acid/g powdered leaf) and 0.77 mM hyperoside (8.58 mg hyperoside/g powdered leaf). The LOD was calculated to be 0.01 mM and the LOQ 0.01 mM by the 9 min and 13 s NMR spectroscopy experiment utilized. The assay showed no significant interference from different field strengths, extraction mesh size, gravimetric scale precision, NMR spectroscopy tube type, pulse program, amount of starting dry material, or day-to-day operation. The robustness of NMR spectroscopy as a means of definitively monitoring chlorogenic acid and hyperoside content directly from crude extracts was demonstrated by Youden statistical analysis.

2011 ◽  
Vol 115 (31) ◽  
pp. 15257-15265 ◽  
Author(s):  
Alexey A. Popov ◽  
Sandra Schiemenz ◽  
Stanislav M. Avdoshenko ◽  
Shangfeng Yang ◽  
Gianaurelio Cuniberti ◽  
...  

2021 ◽  
Author(s):  
nejeh hannachi ◽  
faouzi hlel

Abstract Two new organic-inorganic hybrid materials, (C6H10N2).Cl2 (I) and [C6H10N2]2ZnCl4 (II), have been synthesized by hydrothermal method and characterized by single-crystal X-ray diffraction and XRD pattern investigations. These two compounds are crystallized in the monoclinic system; C2/c space group. In the both structures, the anionic-cationic entities are interconnected by hydrogen bonding contacts and p-p Interaction forming three-dimensional networks. Intermolecular interactions were investigated by Hirshfeld surfaces and the contacts of the four different chloride atoms in (II) were compared. The vibrational absorption bands were identified by infrared spectroscopy. These compounds were also investigated by solid state 13C NMR spectroscopy.


2010 ◽  
Vol 408 (16) ◽  
pp. 3342-3348 ◽  
Author(s):  
María-Belén Turrion ◽  
Francisco Lafuente ◽  
María-José Aroca ◽  
Olga López ◽  
Rafael Mulas ◽  
...  

2001 ◽  
Vol 354 (2) ◽  
pp. 473-480 ◽  
Author(s):  
Frank HATZACK ◽  
Frank HÜBEL ◽  
Wei ZHANG ◽  
Poul E. HANSEN ◽  
Søren K. RASMUSSEN

Inositol phosphates from barley low-phytate grain mutants and their parent variety were analysed by metal-dye detection HPLC and NMR. Compound assignment was carried out by comparison of retention times using a chemical hydrolysate of phytate [Ins(1,2,3,4,5,6)P6] as a reference. Co-inciding retention times indicated the presence of phytate, D/L-Ins(1,2,3,4,5)P5, Ins(1,2,3,4,6)P5, D/L-(1,2,4,5,6)P5, D/L-(1,2,3,4)P4, D/L-Ins(1,2,5,6)P4 and D/L-Ins(1,4,5,6)P4 in PLP1B mutants as well as the parent variety. In grain extracts from mutant lines PLP1A, PLP2A and PLP3A unusual accumulations of D/L-Ins(1,3,4,5)P4 were observed whereas phytate and the above-mentioned inositol phosphates were present in relatively small amounts. Assignment of D/L-Ins(1,3,4,5)P4 was corroborated by precise co-chromatography with a commercial Ins(1,3,4,5)P4 standard and by NMR spectroscopy. Analysis of inositol phosphates during grain development revealed accumulation of phytate and D/L-Ins(1,3,4,5)P4, which suggested the tetrakisphosphate compound to be an intermediate of phytate synthesis. This assumption was strengthened further by phytate degradation assays showing that D/L-Ins(1,3,4,5)P4 did not belong to the spectrum of degradation products generated by endogenous phytase activity. Metabolic scenarios leading to accumulation of D/L-Ins(1,3,4,5)P4 in barley low-phytate mutants are discussed.


2009 ◽  
Vol 92 (2) ◽  
pp. 680-688 ◽  
Author(s):  
Pei Chen ◽  
Renata Atkinson ◽  
Wayne R Wolf

Abstract The purpose of this study was to develop a single-laboratory validated (SLV) method using high-performance liquid chromatography with different detectors diode array detector (DAD); fluorescence detector (FLD); and mass spectrometry (MS) for determination of 7 B-complex vitamins (B1-thiamin, B2-riboflavin, B3-nicotinamide, B6-pyridoxine, B9-folic acid, pantothenic acid, and biotin) and vitamin C in multivitamin/multimineral dietary supplements. The method involves the use of a reversed-phase octadecylsilyl column (4 m, 250 2.0 mm id) and a gradient mobile phase profile. Gradient elution was performed at a flow rate of 0.25 mL/min. After a 5 min isocratic elution at 100 A (0.1 formic acid in water), a linear gradient to 50 A and 50 B (0.1 formic acid in acetonitrile) at 15 min was employed. Detection was performed with a DAD as well as either an FLD or a triple-quadrupole MS detector in the multiple reaction monitoring mode. SLV was performed using Standard Reference Material (SRM) 3280 Multivitamin/Multimineral Tablets, being developed by the National Institute of Standards and Technology, with support by the Office of Dietary Supplements of the National Institutes of Health. Phosphate buffer (10 mM, pH 2.0) extracts of the NIST SRM 3280 were analyzed by the liquid chromatographic (LC)-DAD-FLD/MS method. Following extraction, the method does not require any sample cleanup/preconcentration steps except centrifugation and filtration.


Food Control ◽  
2018 ◽  
Vol 91 ◽  
pp. 231-236 ◽  
Author(s):  
Raffaele Sacchi ◽  
Antonello Paduano ◽  
Nicola Caporaso ◽  
Gianluca Picariello ◽  
Raffaele Romano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document