Emerging Remote Sensing Methods in Underwater Archaeology

Author(s):  
Timothy S. de Smet

As a critical first step in underwater research, the authors stress the importance of using geophysics for detecting, locating, and determining the extent of archaeological deposits. Magnetometry, multibeam depth sounding, side-scan sonar, sub-bottom profiling, airborne bathymetric LiDAR (ABL), and ground-penetrating radar (GPR) are discussed. The hydrographic GPR case study of stratigraphy and bathymetry took place at the Ryan-Harley site. The ABL case study took place at the Lake George Point Site.

Plant Methods ◽  
2017 ◽  
Vol 13 (1) ◽  
Author(s):  
Alfredo Delgado ◽  
Dirk B. Hays ◽  
Richard K. Bruton ◽  
Hernán Ceballos ◽  
Alexandre Novo ◽  
...  

2019 ◽  
Vol 38 (6) ◽  
pp. 453-459
Author(s):  
Nectaria Diamanti ◽  
A. Peter Annan

We provide a coherent approach for developing an understanding of how and where ground-penetrating radar (GPR) can be deployed for tunnel detection. While tunnels in general are of interest, the more specific focus is tunnels that are hand dug or created with a minimal amount of equipment and resources for clandestine purposes. Determining whether GPR can be used for tunnel detection is impossible without an in-depth knowledge of the operational environment and constraints. To effectively address the question, we define the general characteristics of clandestine tunnels, discuss how to estimate the responses amplitude, define the dominant noise types associated with GPR data, and point out how those factors are affected by the GPR system. The key aspects are illustrated using a controlled field case study.


2016 ◽  
Vol 62 (236) ◽  
pp. 1008-1020 ◽  
Author(s):  
J.J. LAPAZARAN ◽  
J. OTERO ◽  
A. MARTÍN-ESPAÑOL ◽  
F.J. NAVARRO

ABSTRACTThis is the first (Paper I) of three companion papers focused respectively, on the estimates of the errors in ice thickness retrieved from pulsed ground-penetrating radar (GPR) data, on how to estimate the errors at the grid points of an ice-thickness DEM, and on how the latter errors, plus the boundary delineation errors, affect the ice-volume estimates. We here present a comprehensive analysis of the various errors involved in the computation of ice thickness from pulsed GPR data, assuming they have been properly migrated. We split the ice-thickness error into independent components that can be estimated separately. We consider, among others, the effects of the errors in radio-wave velocity and timing. A novel aspect is the estimate of the error in thickness due to the uncertainty in horizontal positioning of the GPR measurements, based on the local thickness gradient. Another novel contribution is the estimate of the horizontal positioning error of the GPR measurements due to the velocity of the GPR system while profiling, and the periods of GPS refreshing and GPR triggering. Their effects are particularly important for airborne profiling. We illustrate our methodology through a case study of Werenskioldbreen, Svalbard.


Geomorphology ◽  
2020 ◽  
Vol 367 ◽  
pp. 107311
Author(s):  
Lucía Bermejo ◽  
Ana Isabel Ortega ◽  
Josep M. Parés ◽  
Isidoro Campaña ◽  
José María Bermúdez de Castro ◽  
...  

2020 ◽  
Vol 12 (20) ◽  
pp. 3361
Author(s):  
Przemysław Kuras ◽  
Łukasz Ortyl ◽  
Tomasz Owerko ◽  
Marek Salamak ◽  
Piotr Łaziński

This article describes a case of using remote sensing during a static load test of a large bridge, which, because of its location, belongs to a critical city infrastructure. The bridge in question is the longest tram flyover in Poland. This is an extradosed-type concrete structure. It conducts a long tram line over 21 other active lines of an important railway station in the center of Cracow. The diagnostic of such bridges involving the load test method is difficult. Traditional, contact measurements of span displacements are not enough anymore. In such cases, remote sensing becomes an indispensable solution. This publication presents an example of using the close-range radar remote sensing technique of ground-based radar interferometry. However, the cross-sections of the huge bridge were observed using several methods. The aim was to confirm the conditions and efficiency of radar displacement measurements. They were therefore traditional contact measurements using mechanic sensors conducted, if possible, to the bottom of the span, for precise leveling and measurement using electronic total station. Comparing the results as well as the discussion held demonstrated the fundamental advantages of remote sensing methods over the other more traditional techniques.


Sign in / Sign up

Export Citation Format

Share Document