scholarly journals Classification of UAVs' distorted images using Convolutional Neural Networks

2020 ◽  
Author(s):  
Leandro Silva ◽  
Jocival D. Júnior ◽  
Jean Santos ◽  
João Fernando Mari ◽  
Maurício Escarpinati ◽  
...  

Currently, the use of unmanned aerial vehicles (UAVs) is becoming ever more common for acquiring images in precision agriculture, either to identify characteristics of interest or to estimate plantations. However, despite this growth, their processing usually requires specialized techniques and software. During flight, UAVs may undergo some variations, such as wind interference and small altitude variations, which directly influence the captured images. In order to address this problem, we proposed a Convolutional Neural Network (CNN) architecture for the classification of three linear distortions common in UAV flight: rotation, translation and perspective transformations. To train and test our CNN, we used two mosaics that were divided into smaller individual images and then artificially distorted. Results demonstrate the potential of CNNs for solving possible distortions caused in the images during UAV flight. Therefore this becomes a promising area of exploration.

2019 ◽  
Vol 8 (4) ◽  
pp. 160 ◽  
Author(s):  
Bingxin Liu ◽  
Ying Li ◽  
Guannan Li ◽  
Anling Liu

Spectral characteristics play an important role in the classification of oil film, but the presence of too many bands can lead to information redundancy and reduced classification accuracy. In this study, a classification model that combines spectral indices-based band selection (SIs) and one-dimensional convolutional neural networks was proposed to realize automatic oil films classification using hyperspectral remote sensing images. Additionally, for comparison, the minimum Redundancy Maximum Relevance (mRMR) was tested for reducing the number of bands. The support vector machine (SVM), random forest (RF), and Hu’s convolutional neural networks (CNN) were trained and tested. The results show that the accuracy of classifications through the one dimensional convolutional neural network (1D CNN) models surpassed the accuracy of other machine learning algorithms such as SVM and RF. The model of SIs+1D CNN could produce a relatively higher accuracy oil film distribution map within less time than other models.


Author(s):  
A. A. Artemyev ◽  
E. A. Kazachkov ◽  
S. N. Matyugin ◽  
V. V. Sharonov

This paper considers the problem of classifying surface water objects, e.g. ships of different classes, in visible spectrum images using convolutional neural networks. A technique for forming a database of images of surface water objects and a special training dataset for creating a classification are presented. A method for forming and training of a convolutional neural network is described. The dependence of the probability of correct recognition on the number and variants of the selection of specific classes of surface water objects is analysed. The results of recognizing different sets of classes are presented.


The Analyst ◽  
2017 ◽  
Vol 142 (21) ◽  
pp. 4067-4074 ◽  
Author(s):  
Jinchao Liu ◽  
Margarita Osadchy ◽  
Lorna Ashton ◽  
Michael Foster ◽  
Christopher J. Solomon ◽  
...  

Classification of unprocessed Raman spectra using a convolutional neural network.


Author(s):  
R. Niessner ◽  
H. Schilling ◽  
B. Jutzi

In recent years, there has been a significant improvement in the detection, identification and classification of objects and images using Convolutional Neural Networks. To study the potential of the Convolutional Neural Network, in this paper three approaches are investigated to train classifiers based on Convolutional Neural Networks. These approaches allow Convolutional Neural Networks to be trained on datasets containing only a few hundred training samples, which results in a successful classification. Two of these approaches are based on the concept of transfer learning. In the first approach features, created by a pretrained Convolutional Neural Network, are used for a classification using a support vector machine. In the second approach a pretrained Convolutional Neural Network gets fine-tuned on a different data set. The third approach includes the design and training for flat Convolutional Neural Networks from the scratch. The evaluation of the proposed approaches is based on a data set provided by the IEEE Geoscience and Remote Sensing Society (GRSS) which contains RGB and LiDAR data of an urban area. In this work it is shown that these Convolutional Neural Networks lead to classification results with high accuracy both on RGB and LiDAR data. Features which are derived by RGB data transferred into LiDAR data by transfer learning lead to better results in classification in contrast to RGB data. Using a neural network which contains fewer layers than common neural networks leads to the best classification results. In this framework, it can furthermore be shown that the practical application of LiDAR images results in a better data basis for classification of vehicles than the use of RGB images.


2020 ◽  
Vol 224 (1) ◽  
pp. 191-198
Author(s):  
Xinliang Liu ◽  
Tao Ren ◽  
Hongfeng Chen ◽  
Yufeng Chen

SUMMARY In this paper, convolutional neural networks (CNNs) were used to distinguish between tectonic and non-tectonic seismicity. The proposed CNNs consisted of seven convolutional layers with small kernels and one fully connected layer, which only relied on the acoustic waveform without extracting features manually. For a single station, the accuracy of the model was 0.90, and the event accuracy could reach 0.93. The proposed model was tested using data from January 2019 to August 2019 in China. The event accuracy could reach 0.92, showing that the proposed model could distinguish between tectonic and non-tectonic seismicity.


Author(s):  
Adil Tannouche ◽  
Ahmed Gaga ◽  
Mohammed Boutalline ◽  
Soufiane Belhouideg

The preservation of the environment has become a priority and a subject that is receiving more and more attention. This is particularly important in the field of precision agriculture, where pesticide and herbicide use has become more controlled. In this study, we propose to evaluate the ability of the deep learning (DL) and convolutional neural network (CNNs) technology to detect weeds in several types of crops using a perspective and proximity images to enable localized and ultra-localized herbicide spraying in the region of Beni Mellal in Morocco. We studied the detection of weeds through six recent CNN known for their speed and precision, namely, VGGNet (16 and 19), GoogLeNet (Inception V3 and V4) and MobileNet (V1 and V2). The first experiment was performed with the CNNs architectures from scratch and the second experiment with their pre-trained versions. The results showed that Inception V4 achieved the highest precision with a rate of 99.41% and 99.51% on the mixed image sets and for its version from scratch and its pre-trained version respectively, and that MobileNet V2 was the fastest and lightest with its size of 14 MB.


2021 ◽  
Author(s):  
Richardson Santiago Teles Menezes ◽  
Angelo Marcelino Cordeiro ◽  
Rafael Magalhães ◽  
Helton Maia

In this paper, state-of-the-art architectures of Convolutional Neural Networks (CNNs) are explained and compared concerning authorship classification of famous paintings. The chosen CNNs architectures were VGG-16, VGG-19, Residual Neural Networks (ResNet), and Xception. The used dataset is available on the website Kaggle, under the title “Best Artworks of All Time”. Weighted classes for each artist with more than 200 paintings present in the dataset were created to represent and classify each artist’s style. The performed experiments resulted in an accuracy of up to 95% for the Xception architecture with an average F1-score of 0.87, 92% of accuracy with an average F1-score of 0.83 for the ResNet in its 50-layer configuration, while both of the VGG architectures did not present satisfactory results for the same amount of epochs, achieving at most 60% of accuracy.


Author(s):  
Sachin B. Jadhav

<span lang="EN-US">Plant pathologists desire soft computing technology for accurate and reliable diagnosis of plant diseases. In this study, we propose an efficient soybean disease identification method based on a transfer learning approach by using a pre-trained convolutional neural network (CNN’s) such as AlexNet, GoogleNet, VGG16, ResNet101, and DensNet201. The proposed convolutional neural networks were trained using 1200 plant village image dataset of diseased and healthy soybean leaves, to identify three soybean diseases out of healthy leaves. Pre-trained CNN used to enable a fast and easy system implementation in practice. We used the five-fold cross-validation strategy to analyze the performance of networks. In this study, we used a pre-trained convolutional neural network as feature extractors and classifiers. The experimental results based on the proposed approach using pre-trained AlexNet, GoogleNet, VGG16, ResNet101, and DensNet201 networks achieve an accuracy of 95%, 96.4 %, 96.4 %, 92.1%, 93.6% respectively. The experimental results for the identification of soybean diseases indicated that the proposed networks model achieves the highest accuracy</span>


2021 ◽  
Author(s):  
Shima Baniadamdizaj ◽  
Mohammadreza Soheili ◽  
Azadeh Mansouri

Abstract Today integration of facts from virtual and paper files may be very vital for the expertise control of efficient. This calls for the record to be localized at the photograph. Several strategies had been proposed to resolve this trouble; however, they may be primarily based totally on conventional photograph processing strategies that aren't sturdy to intense viewpoints and backgrounds. Deep Convolutional Neural Networks (CNNs), on the opposite hand, have demonstrated to be extraordinarily sturdy to versions in history and viewing attitude for item detection and classification responsibilities. We endorse new utilization of Neural Networks (NNs) for the localization trouble as a localization trouble. The proposed technique ought to even localize photos that don't have a very square shape. Also, we used a newly accrued dataset that has extra tough responsibilities internal and is in the direction of a slipshod user. The end result knowledgeable in 3 exclusive classes of photos and our proposed technique has 83% on average. The end result is as compared with the maximum famous record localization strategies and cell applications.


2018 ◽  
Vol 7 (3.1) ◽  
pp. 13
Author(s):  
Raveendra K ◽  
R Vinoth Kanna

Automatic logo based document image retrieval process is an essential and mostly used method in the feature extraction applications. In this paper the architecture of Convolutional Neural Network (CNN) was elaborately explained with pictorial representations in order to understand the complex Convolutional Neural Networks process in a simplified way. The main objective of this paper is to effectively utilize the CNN in the process of automatic logo based document image retrieval methods.  


Sign in / Sign up

Export Citation Format

Share Document