scholarly journals The Effect of Cutting Parameters on Tool Wear During the Milling of Carbon Fiber Reinforced Polymer (CFRP) Composites

2019 ◽  
Vol 25 (1) ◽  
Author(s):  
Dervis OZKAN ◽  
Mustafa Sabri GOK ◽  
Hasan GOKKAYA ◽  
Abdullah Cahit KARAOGLANLI
Author(s):  
Jinyang Xu ◽  
Qinglong An ◽  
Ming Chen

In modern manufacturing sectors, mechanical drilling of high-strength carbon fiber–reinforced polymer represents the most challenging task as compared to conventional low-strength carbon fiber–reinforced polymer drilling due to the extremely superior mechanical/physical properties involved. The poor machinability of the composite usually results in serious geometric imperfection and physical damage in drilling and hence leads to a large amount of part rejections. In this article, an experimental investigation concerning the cutting-induced damage when drilling high-strength carbon fiber–reinforced polymer laminates was presented. The studied composite specimen was a newly developed high-strength T800S/250F carbon fiber–reinforced polymer composite. A special concentration was made to inspect and characterize the phenomena of various cutting-induced damage promoted in the material drilling. The work focused on the study of the influence of cutting parameters on the distribution and extent of hole damage formation. The experimental results highlighted the most influential factor of feed rate and tool wear in affecting the final extent of induced hole damage when drilling high-strength T800S/250F carbon fiber–reinforced polymer. For minimizing the various damage formation, optimal cutting parameters (high spindle speed and low feed rate) and rigorous control of tool wear should be seriously taken when drilling this material.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 614 ◽  
Author(s):  
Arya Uthaman ◽  
Guijun Xian ◽  
Sabu Thomas ◽  
Yunjia Wang ◽  
Qiang Zheng ◽  
...  

The usage of polymer composites in various engineering fields has increased. However, the long-term service performance of such materials under aggressive conditions is still poorly understood, which limits the development of safe and economically effective designs. In this study, the aging of an epoxy resin and its carbon fiber-reinforced polymer (CFRP) composites upon immersion in water, acidic, and alkaline solutions was evaluated at different temperatures. The service life of the CFRP composites under various conditions could be predicted by the Arrhenius theory. The thermal and mechanical analysis results indicated that the CFRP composites were more vulnerable to HCl owing to the higher moisture absorption and diffusion of HCl into their cracks. The scanning electron microscopy results showed that the polymer matrix was damaged and degraded. Therefore, to allow long-term application, CFRP composites must be protected from acidic environments.


2019 ◽  
Vol 53 (28-30) ◽  
pp. 4189-4202
Author(s):  
R Prakash ◽  
Vijayan Krishnaraj ◽  
Jamal Sheikh-Ahmad

During trimming of edges of carbon fiber-reinforced polymer composite parts, issues such as resin degradation, delamination, and poor surface finish at the trimmed edges, and increased tool wear in cutting tools used is common. Therefore, it is essential to carry out investigations on edge trimming of carbon fiber-reinforced polymer to find the effect of cutting forces generated and the cutting tool temperature induced at different high speeds and feeds conditions. In this work, two different-coated router tools of titanium aluminum nitride-coated and diamond-like carbon-coated routers were used for investigating the effect of these coatings on cutting force and cutting tool temperature which affect the surface quality of trimmed carbon fiber-reinforced polymer. From the investigation, it was found that the diamond-like carbon-coated router tool has generated lower cutting forces, cutting tool temperatures, and, in turn, better surface finish even at high-speed conditions when compared to other tools. Due to the complex geometry of the router tool, online tool wear monitoring by acoustic emission technique was employed. Acoustic emission signals were taken as the measuring index of tool wear which shows good correlation with direct tool wear measurements. From the experiments, it was found that the tool performance of the diamond-like carbon-coated router is superior when compared to other tools. In addition, for edge trimming of carbon fiber-reinforced polymer composite parts, the diamond-like carbon router tool performed without much disturbance for a length of machining of around 5.9 m which is about 46% of increase in length of machining when compared to uncoated router tool.


2012 ◽  
Vol 576 ◽  
pp. 64-67 ◽  
Author(s):  
Erween Abdul Rahim ◽  
Z. Mohid ◽  
K.C. Mat ◽  
M.F.M. Jamil ◽  
R. Koyasu ◽  
...  

This paper presents an alternative way of producing a hole by using a helical milling concept on a carbon fiber reinforced polymer (CFRP). Delamination is a major problem associated with making a hole by drilling on the CFRP. This study focused on helical milling technique using a vertical machining center in order to produce a hole. Various levels of cutting parameter such as cutting speed, feed rate and depth of cut have been chosen to observe the effect of trust force, delamination and surface roughness. The result will be used to determine on which cutting parameters give the best hole quality that will achieved by this new approached.


Sign in / Sign up

Export Citation Format

Share Document