scholarly journals Sea State Characterization Using Experimental One-Dimensional Radar Signatures and Fractal Techniques

2021 ◽  
Vol 27 (3) ◽  
pp. 71-77
Author(s):  
Georgios Pouraimis ◽  
Apostolos Kotopoulis ◽  
Basil Massinas ◽  
Panayiotis Frangos

This paper presents a novel method of sea state characterization by using four criteria, which are applied to normalized experimental Synthetic Aperture Radar (SAR) one–dimensional signatures (range profiles), provided to our research group by SET 215 Working Group on “SAR radar techniques”. These criteria are the “Fractal Dimension”, “Fractal Length”, “Variance σ2”, and “Power Spectrum Density - Least Squares”. The “Fractal Dimension” and “Fractal Length” criteria, which appear to be the most important out of the four criteria, use the “blanket” technique to provide sea state characterization from SAR radar range profiles. It is based on the calculation of the area of a “blanket”, corresponding to the range profile under examination, and then on the calculation of the corresponding “Fractal Dimension” and “Fractal Length” of the range profile. The main idea concerning this proposed technique is the fact that normalized SAR radar range profiles, corresponding to different sea states, produce different values of “Fractal Dimension” and “Fractal Length” for all angles of incidence examined here. As a result, a sea state characterization technique for two different sea states (turbulent and calm sea) is presented in this paper.

Author(s):  
Hyeun Min Kim ◽  
Hee Cheon No

Trublence-induced vibration is an important concern in the design of the spacer grids of nuclear power plants. This study addresses numerically and statistically the effects of random pressures due to turbulent flows upon the fluctuating responses to the power spectrum density in one-dimensional nuclear fuel rod supported simply by the spacer grids. The dynamic forces produced by the pressure fluctuation on the rod surface are calculated by the 3-dimensional large eddy simulation turbulent model in Fluent 6 to simulate the flow field in the same as being measured empirically via pressure transducers. To acquire response to fluctuating pressure, the mode response equation of vibration is used in case of a cylindrical rod in one-dimensional case. The first modal longitudinal joint acceptance integral including a coherence function is also an important parameter affecting the displacement in the form of the r.m.s. of modal responses along with the damping ratio. The root mean square of the lateral displacement in addition to the natural frequency is studied using the PSD and the longitudinal joint acceptance integral in a fundamental mode. The random pressure PSD on the middle point of the rod shows the typical turbulence pattern: the PSD energy decreases slightly in a low frequency region, but decreases rapidly and linearly with frequency as the frequency exceeds a certain value. The PSD in a very high frequency region is obtained assuming the slope is constant in a logarithmic graph after smoothing the PSD. It turns out that the r.m.s. displacement ranges from 15 to 40 micro-meter at the maximum value using the mode response equation under the modal damping ration ranging from 0.01 to 0.05.


2018 ◽  
Vol 35 (3-4) ◽  
pp. 277-288
Author(s):  
Xiaxia ZENG ◽  
Zhenhua SONG ◽  
Wenzhong LIN ◽  
Haibo LUO

2013 ◽  
Vol 423-426 ◽  
pp. 1589-1593
Author(s):  
Jia Ning Zhu ◽  
Ya Zhou Xu ◽  
Guo Liang Bai ◽  
Rui Wen Li

The response of a large-size cooling tower with 250m high subjected to the seismic action are investigated by both random vibration theory and response spectrum method. Shell element is taken to model the tower body, and beam element is used for the circular foundation and supporting columns. The earthquake motion input is a colored filtered white noise model and mode superposition method is adopted to analyze the random response of the large-size cooling tower. The paper presents the power spectrum density functions (PDF) and standard deviation of the displacement of the top and characteristic node, and the analysis results indicate that the results of the stationary random vibration theory and the response spectrum method are the same order of magnitude. The power spectrum density function of the bottom node stress is obviously bigger than the one at the top and the throat, and the random response of meridonal stress is dominated at the top. In addition, the peak frequency position of the power spectrum density function is different from the corresponding stress.


2013 ◽  
Vol 423-426 ◽  
pp. 1238-1242
Author(s):  
Hao Wang ◽  
Xiao Mei Shi

The input of road roughness, which affects the ride comfort and the handling stability of vehicle, is the main excitation for the running vehicle. The time history of the road roughness was researched with the random phases, based on the stationary power spectrum density of the road roughness determined by the standards. Through the inverse Fourier transform, the random phases can be used to get the road roughness in time domain, together with the amplitude. Then, the time domain simulation of the non-stationary random excitation when the vehicle ran at the changing speed, would also be studied based on the random phases. It is proved that the random road excitation for the vehicle with the changing speed is stationary modulated evolution random excitation, and its power spectrum density is the stationary modulated evolutionary power spectrum density. And the numerical results for the time history of the non-stationary random inputs were also provided. The time history of the non-stationary random road can be used to evaluate the ride comfort of the vehicle which is running at the changing speed.


Sign in / Sign up

Export Citation Format

Share Document