scholarly journals High Mn TWIP Steels for Automotive Applications

Author(s):  
B. C. De Cooman ◽  
Kwang-geun Chin ◽  
Jinkyung Kim
2011 ◽  
Vol 409 ◽  
pp. 719-724 ◽  
Author(s):  
Ahmed A. Saleh ◽  
Azdiar A. Gazder ◽  
Dagoberto Brandao Santos ◽  
Elena V. Pereloma

TWinning Induced Plasticity (TWIP) steels have been recently developed as a promising material for automotive applications. In the present work the recrystallisation behaviour of 42% cold-rolled Fe-24Mn-3Al-2Si-1Ni-0.06C TWIP steel was investigated during isochronal annealing for 300s via microhardness testing, Electron Back-Scattering Diffraction (EBSD) and uniaxial tensile testing. EBSD internal misorientation data corroborates recrystallised fraction estimates from microhardness measurements. Annealing twins play an important role during recrystallisation by bulging at the deformed grain boundaries during nucleation and generating twin related orientations. During uniaxial tension, the recovered condition recorded three work hardening regions while all partially recrystallised samples exhibited four regions. A modified Hollomon scheme is suggested to account for the effect of strain on microstructure refinement.


2011 ◽  
Vol 1296 ◽  
Author(s):  
Bruno C. De Cooman

ABSTRACTHigh Mn TWinning-Induced Plasticity (TWIP) steels have mechanical properties which make them suitable for effective vehicle mass containment and an enhanced passenger safety in automotive applications. High Mn TWIP steels with additions of C and Al are fully austenitic at room temperature and have a stacking fault energy (SFE) within the narrow range of 20-30 mJ/m2 required for mechanical twin formation. The present contribution reviews the state-of-the-science on TWIP steels, and highlights those areas where there is still a lack of fundamental understanding of their properties, such as the effect of the anti-ferromagnetic transition, the influence of interstitial C, the twinning mechanism, the effect of slip and twinning on the crystallographic texture evolution and the delayed fracture phenomenon.


Author(s):  
B. C. De Cooman ◽  
L. Chen ◽  
Han Soo Kim ◽  
Y. Estrin ◽  
S. K. Kim ◽  
...  

PIERS Online ◽  
2010 ◽  
Vol 6 (4) ◽  
pp. 350-354 ◽  
Author(s):  
Shao-En Hsu ◽  
Wen-Jiao Liao ◽  
Wei-Han Lee ◽  
Shih-Hsiung Chang

2020 ◽  
pp. 5-18
Author(s):  
D. V. Prosvirnin ◽  
◽  
M. S. Larionov ◽  
S. V. Pivovarchik ◽  
A. G. Kolmakov ◽  
...  

A review of the literature data on the structural features of TRIP / TWIP steels, their relationship with mechanical properties and the relationship of strength parameters under static and cyclic loading was carried out. It is shown that the level of mechanical properties of such steels is determined by the chemical composition and processing technology (thermal and thermomechanical processing, hot and cold pressure treatment), aimed at achieving a favorable phase composition. At the atomic level, the most important factor is stacking fault energy, the level of which will be decisive in the formation of austenite twins and / or the formation of strain martensite. By selecting the chemical composition, it is possible to set the stacking fault energy corresponding to the necessary mechanical characteristics. In the case of cyclic loads, an important role is played by the strain rate and the maximum load during testing. So at high loading rates and a load approaching the yield strength under tension, the intensity of the twinning processes and the formation of martensite increases. It is shown that one of the relevant ways to further increase of the structural and functional properties of TRIP and TWIP steels is the creation of composite materials on their basis. At present, surface modification and coating, especially by ion-vacuum methods, can be considered the most promising direction for the creation of such composites.


Sign in / Sign up

Export Citation Format

Share Document