scholarly journals Wind Turbines Integration with Storage Devices: Modelling and Control Strategies

Wind Turbines ◽  
10.5772/15101 ◽  
2011 ◽  
Author(s):  
Samuele Grillo ◽  
Mattia Marinelli ◽  
Federico Silvestro
Author(s):  
G Zheng ◽  
H Xu ◽  
X Wang ◽  
J Zou

This paper studies the operation of wind turbines in terms of three phases: start-up phase, power-generation phase, and shutdown phase. Relationships between the operational phase and control rules for the speed of rotation are derived for each of these phases. Taking into account the characteristics of the control strategies in the different operational phases, a global control strategy is designed to ensure the stable operation of the wind turbine in all phases. The results of simulations are presented that indicate that the proposed algorithm can control the individual phases when considered in isolation and also when they are considered in combination. Thus, a global control strategy for a wind turbine that is based on a single algorithm is presented which could have significant implications on the control and use of wind turbines.


2018 ◽  
Vol 61 ◽  
pp. 00002 ◽  
Author(s):  
Djamel Ikni ◽  
Ahmed Ousmane Bagre ◽  
Mamadou Bailo Camara ◽  
Brayima Dakyo

The injection of wind farm production into a grid, needs optimal strategies for energy transfer management. Usually, the power produced by the wind farms does not fulfil all the grid code requirements. The main problem is generally based on the way to reduce the impacts of power production fluctuations on the grid voltage and its frequency. To solve this problem, some authors suggest the use of an interface such as energy storage devices in order to compensate the wind power fluctuations. In fact, the storage devices installed between the wind farm and the grid can improve the power quality in terms of stability but in other hand the size and the cost of the system can be increased. In this paper, two solutions have been proposed in case the power quality produced by the wind farm is out of the grid code requirements. The improvement of the energy quality of an offshore wind farm without storage and connected to the grid is discussed. The proposed solution is to operate the wind turbines with a reserve of power. To distribute this reserve equitably among wind turbines, a proportional distribution algorithms has been developed. The results obtained show clearly the effectiveness of the strategy.


2019 ◽  
Vol 57 (3) ◽  
pp. 356
Author(s):  
Nguyen Tuan Anh ◽  
Nguyen Huu Duc

The power of the wind turbine are significantly affected by the air conditions of the operating environment. Rain is a widespread phenomenon in many parts of the world especially in Vietnam, so exploring its effect on the power of wind turbines will provide valuable insights into the design of a new wind tower. In this paper, a method and a model is developed to estimate the effect of precipitation by simulating the actual physical processes of the rain drops forming on the surface of the blades of horizontal-axis wind turbines (HAWT), thereby determining optimal wetness, then power and performance respectively. Consequently, it makes a contribution to operation and control strategies for horizontal-axis wind turbines.


Author(s):  
Sameh Zenned ◽  
Emna Aridhi ◽  
Abdelkader Mami

The number of installations of Micro-Grid or intelligent micro power networks will increase to quadruple by 2020.The purpose is to reduce the cost and the consumption of electricity in transmission and distribution networks, using a hybrid system powered by solar and wind sources, as well as integrating storage devices. This paper reviews and discusses the Micro-Grid Model. It describes various Micro-Grid components and different configurations. It also presents the model of two generation units (Photovoltaic and Wind Turbine). Then, a comparative study of different battery types used for large-scale electricity storage is carried out, followed by a review of control strategies.


Author(s):  
Donald L. Simon ◽  
Joseph W. Connolly

Abstract This paper provides a high-level review of the potential failure modes and hazards to which electrified aircraft propulsion (EAP) systems are susceptible, along with potential gas turbine control-based strategies to assist in the mitigation of those failures. To introduce the types of failures that an EAP system may experience, a generic EAP system is considered, consisting of gas turbine engines, mechanical drives, electric machines, power electronics and distribution systems, energy storage devices, and motor driven propulsors. The functionality provided by each of these EAP subsystems is discussed, along with their potential failure modes, and possible strategies for mitigating those failures. To further illustrate the role of gas turbine controls in mitigating EAP failure modes, an example based on a simulated EAP concept aircraft proposed by NASA is given. The effects of failures are discussed, along with turbomachinery control strategies, including reversionary control modes, and control limit logic.


Author(s):  
Silvio Simani ◽  
Stefano Alvisi ◽  
Mauro Venturini

Increasingly, there is a focus on utilising renewable energy resources in a bid to fulfil increasing energy requirements and mitigate the climate change impacts of fossil fuels. While most renewable resources are free, the technology used to usefully convert such resources is not and there is an increasing focus on improving the conversion economy and efficiency. To this end, advanced control technologies can have a significant impact and is already a relatively mature technology for wind turbines. Though hydroelectric plants can use simple regulation systems, significant benefits have been shown to accrue from the appropriate use of the same control methods designed for wind turbine plants. This represents the key point of the paper. In fact, to date, the application communities connected with wind and hydraulic energies have had little communication, resulting in little cross fertilisation of control ideas and experience, particularly from the more mature wind area to hydrodynamic systems. Therefore, this paper examines the models and the application of control technology across both domains, both from a comparative and contrasting point of view, with the aim of identifying commonalities in models and control objectives, as well as potential solutions. Key comparative reference points include the articulation of the exployed models, specification of control objectives, development of high--fidelity simulators, and development of solution concepts. Not least, in terms of realistic system requirements are the set of physical and constraints under which such renewable energy systems must operate, and the need to provide reliable and robust control solutions, which respect the often remote and relatively inaccessible location of many onshore and offshore deployments.


2020 ◽  
Author(s):  
Daniel Poremski ◽  
Sandra Henrietta Subner ◽  
Grace Lam Fong Kin ◽  
Raveen Dev Ram Dev ◽  
Mok Yee Ming ◽  
...  

The Institute of Mental Health in Singapore continues to attempt to prevent the introduction of COVID-19, despite community transmission. Essential services are maintained and quarantine measures are currently unnecessary. To help similar organizations, strategies are listed along three themes: sustaining essential services, preventing infection, and managing human and consumable resources.


Sign in / Sign up

Export Citation Format

Share Document