scholarly journals Scale-up of a Cold Flow Model of FICFB Biomass Gasification Process to an Industrial Pilot Plant – Example of Dynamic Similarity

Author(s):  
Jernej Mele
2011 ◽  
Vol 34 (12) ◽  
pp. 2091-2098 ◽  
Author(s):  
D. C. Guío-Pérez ◽  
G. Tondl ◽  
W. Höltl ◽  
T. Pröll ◽  
H. Hofbauer

2015 ◽  
Vol 5 (1) ◽  
pp. 11
Author(s):  
Anies Mutiari ◽  
Wiratni Wiratni ◽  
Aswati Mindaryani

Pemurnian biogas telah banyak dilakukan untuk menghilangkan kadar CO2  dan meningkatkan kandungan CH4  yang terkandung di dalamnya. Kandungan CH4 yang tinggi akan memberikan unjuk kerja yang lebih baik. Model  matematis proses adsorpsi CO2 disusun berdasarkan teori lapisan film antar fasa, dimana pada proses yang ditinjau terdapat tiga fase yaitu gas, cair dan padat. Model matematis dari data eksperimental   kecepatan dan kesetimbangan proses adsorpsi CO2 melalui mekanisme pertukaran ion di suatu kolom adsorpsi telah dibuat. Model ini dibuat untuk mencari konstanta yang dapat dipergunakan pada proses scale up data laboratorium ke skala pilot plant. Parameter proses kecepatan yang dicari nilainya adalah koefisien transfer massa massa volumetris CO2 pada fase cair (kLa), koefisien transfer massa volumetris CO2 pada fasegas (kGa) dan tetapan laju reaksi (k1 dan k2). Pada hasil penelitian ini ditunjukkan bahwa nilai parameter yang diperoleh sesuai hasil fitting data dengan model matematis yang digunakan, yaitu model transfer massa pada lapisan film antar fase secara seri: adalah kGa, kla, k1 dan k2  dengan nilai Sum of Squares Error (SSE) rata-rata 0,0431. Perbandingan nilai kGa hasil simulasi dan teoritisnya memberikan kesalahan rata-rata 18,79%. Perbandingan nilai kLa hasil simulasi dan teoritis memberikan kesalahan rata-rata 7,92%.Kata kunci: model matematis, adsorpsi CO2, pemurnian biogas


2021 ◽  
Vol 11 (1) ◽  
pp. 189-203
Author(s):  
A. Lunzer ◽  
S. Kraft ◽  
S. Müller ◽  
H. Hofbauer

2019 ◽  
Vol 353 ◽  
pp. 10-19 ◽  
Author(s):  
Yijun Liu ◽  
Shiyi Chen ◽  
Min Zhu ◽  
Ahsanullah Soomro ◽  
Wenguo Xiang

2021 ◽  
Author(s):  
Ibtihaj Khurram Faridi ◽  
Evangelos Tsotsas ◽  
Wolfram Heineken ◽  
Marcus Koegler ◽  
Abdolreza Kharaghani

1964 ◽  
Vol 4 (01) ◽  
pp. 56-66 ◽  
Author(s):  
L.L. Melton ◽  
W.T. Malone

Abstract Fluid mechanics research conducted with non-Newtonian fluid systems now permits prediction of the behavior of these fluid systems in both laminar and turbulent modes of flow through circular pipes. Present work concerns non-Newtonian fluid systems currently used in the hydraulic fracturing process. During fracturing treatments, an unsteady-state condition may frequently be encountered arising from' the reaction rate of a chemical additive. This condition must be evaluated in order to predict the actual behavior of a particular fluid during field application. Design and operation of the apparatus used to determine fluid-flow behavior permit obtaining data under such non-equilibrium conditions. This paper shows methods used to obtain rheology measurements, develop hydraulic relationships and evaluate chemical reactions producing unsteady-state conditions. Engineering application of this research is illustrated by employing measured rheological values and developed hydraulic relationships to produce frictional pressure loss (psi/100 ft) vs flow rate (bbl/min) charts of common tubing and casing sizes for an example fracturing fluid. How these charts and chemical reaction rate information are then combined to predict actual turbulent hydraulic behavior during unsteady-state field conditions is also discussed. Introduction Many fluids used in hydraulic fracturing contain chemical additives which impart non-Newtonian fluid properties that may drastically alter their hydraulic behavior. Equally drastic alteration in wellhead pressure, injection rate and hydraulic horsepower requirement may result from these fluid properties. Prior research conducted to relate non-Newtonian fluid properties with hydraulic behavior has not as yet produced a universal relationship, particularly for the turbulent flow region. Which of the many possible non-Newtonian fluid properties is responsible has not been conclusively established. A systematic description, suggested by Metzner, of the many possible non-Newtonian fluid properties exhibited by real - fluid behavior, and a current discussion of theoretical and applied aspects of non-Newtonian fluid technology can be found in Handbook of Fluid Dynamics. Little or no research has previously been attempted with fluids exhibiting time - dependent properties. Addition of chemicals during a fracturing treatment is often accomplished by continuously mixing and displacing the fluid. This produces a time-dependent effect or unsteady-state condition while the fluid is progressing through surface and wellbore conductors. This condition is due to solution or chemical reaction of the additive. Considerable departure from conventional methods of obtaining and interpreting data was found necessary to consider these conditions. Therefore methods were developed to obtain hydraulic behavior information under these complex, unsteady-state conditions. Relationships presented in this paper to predict hydraulic behavior of non-Newtonian fluids in circular pipes were obtained by constructing and operating a small pipeline apparatus in the manner of a pilot-plant study. These relationships are suggested as scale-up equations and are not proposed as fundamental rheological parameters. While perhaps deficient from a fundamental research viewpoint, a pilot-plant study does permit the determination and convenient evaluation of variables pertinent to a process. A pilot-plant study can result in a valid engineering application procedure even when fundamental relationships are still undefined. An excellent series of articles by Bowen has appeared in the chemical engineering literature. These give a thorough review of proposed hydraulic relationships and their limitations for non-Newtonian fluid behavior in circular pipes. A graphical method is presented to scale up data for a fluid exhibiting an anomalous hydraulic behavior in the turbulent flow region. Considerable assistance has been obtained from these articles to interpret the anomalous behavior noted during this investigation. These articles also provided assurance that a pilot plant is a practical approach to evaluate the hydraulic behavior of non-Newtonian fracturing fluids. SPEJ P. 56ˆ


1982 ◽  
pp. 89-100 ◽  
Author(s):  
H. T. Wilson ◽  
R. Fletcher ◽  
R. J. Davies

Sign in / Sign up

Export Citation Format

Share Document