scholarly journals Induction of Apoptosis in Human Cancer Cells by Human Eb- or Rainbow Trout Ea4-Peptide of Pro-Insulin-Like Growth Factor-I (Pro-IGF-I)

Author(s):  
Maria J. ◽  
Chun-Mean Lin ◽  
Thomas T.
2010 ◽  
Vol 298 (2) ◽  
pp. R341-R350 ◽  
Author(s):  
Beth M. Cleveland ◽  
Gregory M. Weber

The effects of insulin-like growth factor-I (IGF-I), insulin, and leucine on protein turnover and pathways that regulate proteolytic gene expression and protein polyubiquitination were investigated in primary cultures of 4-day-old rainbow trout myocytes. Supplementing media with 100 nM IGF-I increased protein synthesis by 13% ( P < 0.05) and decreased protein degradation by 14% ( P < 0.05). Treatment with 1 μM insulin increased protein synthesis by 13% ( P < 0.05) and decreased protein degradation by 17% ( P < 0.05). Supplementing media containing 0.6 mM leucine with an additional 2.5 mM leucine did not increase protein synthesis rates but reduced rates of protein degradation by 8% ( P < 0.05). IGF-I (1 nM–100 nM) and insulin (1 nM-1 μM) independently reduced the abundance of ubiquitin ligase mRNA in a dose-dependent manner, with maximal reductions of ∼70% for muscle atrophy F-box (Fbx) 32, 40% for Fbx25, and 25% for muscle RING finger-1 (MuRF1, P < 0.05). IGF-I and insulin stimulated phosphorylation of FOXO1 and FOXO4 ( P < 0.05), which was inhibited by the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor wortmannin, and decreased the abundance of polyubiquitinated proteins by 10–20% ( P < 0.05). Supplementing media with leucine reduced Fbx32 expression by 25% ( P < 0.05) but did not affect Fbx25 nor MuRF1 transcript abundance. Serum deprivation decreased rates of protein synthesis by 60% ( P < 0.05), increased protein degradation by 40% ( P < 0.05), and increased expression of all ubiquitin ligases. These data suggest that, similar to mammals, the inhibitory effects of IGF-I and insulin on proteolysis occur via P I3-kinase/protein kinase B signaling and are partially responsible for the ability of these compounds to promote protein accretion.


2002 ◽  
Vol 34 (2) ◽  
pp. 122-127
Author(s):  
Seung Min Kwak ◽  
Se Kyu Kim ◽  
Sung Kyu Kim ◽  
Chul Ho Cho

1991 ◽  
Vol 130 (1) ◽  
pp. 87-92 ◽  
Author(s):  
S. D. McCormick ◽  
T. Sakamoto ◽  
S. Hasegawa ◽  
T. Hirano

ABSTRACT The ability of insulin-like growth factor-I (IGF-I), insulin and GH to promote hypoosmoregulatory ability was examined in juvenile rainbow trout (Oncorhynchus mykiss). Following adaptation to 12 parts per thousand (p.p.t.) seawater for 5 days, fish were given a single injection of hormone or vehicle, then exposed to 29 p.p.t. for 24 h and examined for changes in plasma osmolarity, ions and glucose. Ovine GH (oGH; 0·2 μg/g) significantly improved the ability of rainbow trout to maintain plasma osmolarity and sodium levels following transfer to 29 p.p.t. seawater. Recombinant bovine IGF-I (0·01, 0·05 and 0·2 μg/g) also improved the hypoosmoregulatory ability of trout; the effect being dose-dependent and greater than that of oGH. Bovine insulin (0·01, 0·05 and 0·2 μg/g) had no statistically significant effect on plasma ions. The results indicate that IGF-I is a potential mediator of the action of GH in seawater adaptation of salmonids. Journal of Endocrinology (1991) 130, 87–92


Sign in / Sign up

Export Citation Format

Share Document